LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

SIXTH SEMESTER - NOVEMBER 2016

PH 6611 - ATOMICS AND NUCLEAR PHYSICS	
Date: 14-11-2016 Dept. No. Time: 09:00-12:00	Max.: 100 Marks
PART-A Answer ALL questions	(10 x 2 =20 marks)
 Write the properties of positive rays. Define Pauli's exclusion principle. Explain fine structure of the sodium D-line. Calculate the wavelength separation between the unmodified line of wavelength 6000 Å and the modified lines when a magnetic induction of 1 Wbm⁻² is applied, in normal Zeeman effect. Classify isobar and isotope with example. Define range of an α particle. Define chain reaction. Explain nuclear fission. Give example. State Hubble's law. What are cosmic ray showers? 	
PART –B Answer any FOUR questions	(4 x 7.5 = 30 marks)
 What are positive rays? Describe Thomson's method for positive ray analysis. Explain about (i) L-S coupling and (ii) j-j coupling. Explain (i) mass defect (ii) binding energy (iii) packing fraction. Discuss the liquid drop model of a nucleus. Give an account of anti-particles with suitable examples. Explain the four fundamental interactions in elementary particles. 	(7.5) (4+3.5) (3x2.5) (7.5) (7.5)
PART – C	(1.5)
Answer any FOUR questions (4)	x12.5=50 marks)
7. Give an account of Bohr – Sommerfield model of an elliptical electron orbits of l How does it account for the fine structure of hydrogen atom?	(12.5)
8. Describe the experimental arrangement of Zeeman Effect and Anomalous Zeema	an effect. (12.5)
 19. Describe the method of measuring the range of α particle using Geiger and Nutta 20. Discuss in detail the Gamow's theory of α-decay. 21. (i) Distinguish between primary and secondary cosmic rays. (ii) Write a note on 	(12.5) (12.5)
variation with latitude, altitude, longitude, and east-west direction. 22. Explain in detail about the quantum numbers in elementary particle.	(2.5+10) (12.5)