B.Sc.DEGREE EXAMINATION -PHYSICS
 THIRD SEMESTER - NOVEMBER 2017

16UPH3MC01- MATHEMATICAL PHYSICS

Date: 04-11-2017
Time: 09:00-12:00

PART- A

Answer all Questions

(10×2=20 marks)

1. $\mathrm{Ifz}_{1}=a-i$ and $\mathrm{z}_{2}=a+i$ find $\mathrm{z}_{1} * \mathrm{z}_{2}$ for any real ' a '.
2. State the conditions for a function to be analytic.
3. Find grad φ if $\varphi=x^{2} y^{3}$.
4. Give two examples of vector point function.
5. What do you mean by orthogonality of trigonometric system?
6. What are odd and even functions?
7. Write the heat flow equation.
8. Obtain the differential equation of vibrating string.
9. Write Lagrange's interpolation formula
10. Write down trapezoidal rule for integration.

PART -B

Answer any FOUR Questions
11. Derive Cauchy Riemann conditions for a function to be analytic in a given region.
12. If $\vec{u}=\mathrm{yz} \vec{\imath}+\mathrm{zx} \vec{\jmath}+\mathrm{xy} \vec{k}$ and $\mathrm{f}=\mathrm{xyz}$ find curl ($\mathrm{f} \vec{u})$.
13. Find the Fourier series of the equation
$\mathrm{F}(\mathrm{x})=\left\{\begin{array}{l}0, \text { if }-2<x<-1 \\ k, \text { if }-1<x<1 \\ 0 \text {, if } 1<x<2\end{array}\right.$
14. Solve the differential equation $2 x \frac{\partial u}{\partial x}-3 y \frac{\partial v}{\partial y}=0$ by the method of sepearation of variable.
15. Using Simpson's $1 / 3{ }^{\mathrm{rd}}$ rule, Evaluate $\int_{0}^{1} \sqrt{1+x^{2}}$ dx with ten equal intervals.
16. i) Sketch $|z-4 i|=7$
ii) Evaluate $\int_{c} \frac{z}{z^{2}+1} d z w h e r e c$ is $|z+i|=1$

PART -C

Answer any FOUR Questions
17. The centre of a regular hexagon is at the origin and one vertex is given as $\sqrt{3}+i$ in the Argand diagram. Find the complex number represented by other vertices.
18. Verify Green's theorem in a plane for $\int_{c}\left(x^{2}+2 x y\right) d x+\left(y^{3}+x^{3} y\right) d y$ where c is a square with the vertices $\mathrm{P}(0,0) ; \mathrm{Q}(1,0) ; \mathrm{R}(1,1) ; \mathrm{S}(0,1)$.
19. Find the even and odd periodic half range expansions of the function.
$\mathrm{F}(\mathrm{x})=\left\{\begin{array}{c}\frac{2}{L} \text { xif } 0<x<\frac{L}{2} \\ \frac{2}{L}(L-x) \text { if } \frac{1}{2}<x<L\end{array}\right.$
20. Write Laplace equation in cylindrical coordinates and derive its general solution.
21. Derive Newton's forward interpolation on formula and using it find the value of y at $\mathrm{x}=0.23$ from the following table.

X	0.20	0.22	0.24	0.26	0.28	0.30
Y	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

22. Find the Fourier cosine and sine integral of $\mathrm{f}(\mathrm{x})=e^{-k x}$ where $\mathrm{x}>0, \mathrm{k}>0$.
