B.Sc. DEGREE EXAMINATION - PHYSICS
 THIRD SEMESTER - NOVEMBER 2017
 16UPH3MCO2 - ELECTRONICS - I

Date: 07-11-2017
Time: 09:00-12:00

PART - A

Answer All Questions.

(10×2 X 20 MARKS $)$

1. Define a constant-voltage source.
2. State maximum power transfer theorem.
3. Explain quiescent point on a dc load line.
4. Draw the circuit of a voltage divider biasing network.
5. Explain the concept of virtual ground with respect to operational amplifiers.
6. For an inverting amplifier $\mathrm{R}_{1}=1 \mathrm{k}$ and $\mathrm{R}_{\mathrm{f}}=1 \mathrm{M}$. Assuming an ideal op-amp determine the voltage gain, input resistance and output resistance.
7. Prove that $A+B C=(A+B)(A+C)$
8. Draw the circuit of MOD 4 counter using JK flip flops.
9. State any two methods employed in the fabrication of thin film ICs.
10. What are linear integrated circuits? State its applications.

PART - B

Answer ANY FOUR Questions.
($4 \times 7.5=30$ marks)
11. State Thevenin's theorem and explain the procedure for arriving at Thevenin voltage and resistance using an example.
12. Explain with a neat circuit the functioning of a Wein Bridge oscillator.
13. Describe the construction and working of a MOSFET.
14. Describe the working of a JK flip flop with neat circuit diagram.
15. Explain the fabrication of monolithic Integrated Circuits.
16. With a neat circuit explain the working of a transistor Monostable Multivibrator.

PART C

17. State superposition theorem and use it to find the current through R_{1} in the following circuit where $\mathrm{V}_{2}=12 \mathrm{~V} ; \mathrm{V}_{1}=6 \mathrm{~V} ; \mathrm{R}_{1}=4 \quad ; \mathrm{R}_{2}=4 \quad ; \mathrm{R}_{3}=6$.

18. Explain the working of a two stage RC coupled amplifier in CE configuration. State the advantages of RC coupling.
19. (a) State the characteristics of an ideal op-amp.
(b) Describe with suitable circuit diagrams the functioning of an op-amp as a summing and difference amplifier.
20. Draw the logic circuit and explain the working of a 4 bit up/down counter with relevant truth table.
21. Describe the various processes involved in the fabrication of transistors, diodes, resistors and capacitors.
22. Explain with a logic diagram how shift right and shift left operations can be performed using a 4 -bit shift register.
