LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
m.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2017
17PPH1MCO2 - ELECTRODYNAMICS

Date: 04-11-2017
Dept. No. \square
Max. : 100 Marks
Time: 01:00-04:00

PART A

Answer ALL questions:

1. An infinite plane carries a uniform surface charge σ. Find its electric field.
2. Find the electric field at a distance S from an infinitely long straight wire, which carries a uniform line charge λ.
3. A cylindrical resistor of cross-sectional area A and length L is made from material with conductivity σ. If the potential difference between the ends is V , what current flows?
4. Calculate the magnitude of Poynting vector at the surface of the sun. Given that power radiated by sun $=3.8 \times 10^{26}$ watts and radius of the sun is $7 \times 10^{8} \mathrm{~m}$.
5. Event A happens at point $\left(\mathrm{X}_{\mathrm{A}}=5, \mathrm{Y}_{\mathrm{A}}=3, \mathrm{Z}_{\mathrm{A}}=0\right)$ and at time t_{A} given by $\left(\mathrm{ct}_{\mathrm{A}}=15\right)$. Event B occurs at $(10,8,0)$ at $\mathrm{ct}_{\mathrm{B}}=5$. Both in system S . Find the invariant interval between $\mathrm{A} \& \mathrm{~B}$..
6. Two lumps of clay, each of rest mass (m), collide head-on at - c if they stick together, what is the mass (M) of the composite lump?
7. Consider two large metal plates each of area ' A ' and charge Q on each plate. What is the electrostatic pressure on these plates?
8. The plates of a parallel plate capacitor move close by an infinitesimal distance S. Find the work done by electrostatic forces in terms of the field E.
9. Describe Hall-Magneto Hydrodynamics.
10. Find the cut-off frequency for a given wave guide in the mode TE_{10}

PART B

Answer any FOUR questions:
11. Derive the cyclotron formula. A particle of charge q enters a region of uniform magnetic field B. The field deflects the particle a distance d above to original line of flight. Find the momentum of the particle. $(3+4.5)$
12. Two concentric metal spherical shell of radii a and b are separated by a conducting material of conductivity σ. (a) If they maintain a potential difference, what current flows from one to the other? (b) What is the resistance between the shells? $(2.5+5)$
13. A pion at rest decays into a muon and a neutrino. Find the energy of the outgoing muon in terms of the two masses, $m \pi$ and m (assume $m v=0$). Also find the velocity of the outgoing muon.
14. An infinite straight wire carries a current $\mathrm{I}(\mathrm{t})=0$ (for $\mathrm{t} \leq 0$) and $I(t)=I_{0}($ for $t>0)$. Find the resulting electric and magnetic fields.
15. Consider a rectangular wave guide with dimensions $2.28 \mathrm{~cm} \times 1.01 \mathrm{~cm}$. What TE modes will propagate in this wave guide, if the driving frequency is $1.70 \times 10^{10} \mathrm{~Hz}$?
16. (a) State Larmor Formula. (b) Suppose an electron decelerated at a constant rate a from some initial velocity v_{0} down to zero. What fraction of its initial kinetic energy is lost to radiation? (assume $\left.\mathrm{v}_{0} \ll \mathrm{c}\right)(2.5+5)$.

PART C

Answer any FOUR questions:

$$
(4 \times 12.5=50 \text { marks })
$$

17. (a) State Gauss theorem. (b) Find the capacitance of two concentric spherical metal shells with radii a and b. (c) Find the capacitance per unit length of two co-axial cylindrical tubes of radii a and $b .(2.5+5+5)$.
18. (a) What is Gauge transformation? Explain Lorentz Gauge. (b) Find the energy stored in a section of length of a long solenoid (radius R, current I, n turns per unit length). $(8+4.5)$
19. Derive the complete set of Lorentz transformation equations and hence arrive at Einstein velocity addition rule.
20. Find the potentials of a point charge moving with a constant velocity.
21. Show that a coaxial transmission line support TEM waves. Find the charge density $\lambda(z, t)$ and the current $I(z, t)$ on the inner conductor. $(6.5+6)$
22. Prove the uniqueness theorems in electrostatics.
