LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – PHYSICS

FIRSTSEMESTER – NOVEMBER 2017

17/16PPH1MC04 /PH1820- MATHEMATICAL PHYSICS - I

Date: 10-11-2017	Dept. No.	Max. : 100 Marks
Time: 01:00-04:00		

PART A

Answer all questions

- 1. Write the algorithm of Runge-kutta method of solving differential equations
- 2. Sketch the graph $y = \sin 3x$
- 3. If $f(z) = \ln (1 + z)$, expand f(z) in Taylor's series about z = 0.
- 4. Show that $\int f(z)dz$ is independent of the path followed Cauchy's theorem
- 5. Show that there is no scalar $\alpha_1, \alpha_2, \alpha_3$ such that $\alpha_1(1,0,1,0) + \alpha_2(1,0,-2,1) + \alpha_3(2,0,1,2) = (1,-2,2,3)$
- 6. Evaluate $\|\vec{u} + \vec{v}\|$ for $\vec{u} = (1,0,-1,2)$ and $\vec{v} = (2,1,3,-1)$
- 7. If x^i and x^{-i} are independent coordinates of a point, $\frac{\partial x^i}{\partial x^{-P}} \cdot \frac{\partial x^{-P}}{\partial x^i} = \delta_j^i$
- 8. Define piezoelectric tensor
- 9. Find $\Gamma(\frac{-1}{2})$

10. Arrive at the solution of $\int_0^{\frac{\pi}{2}} \sin \theta \, d\theta$ using the knowledge of special functions

PART B

Answer any four questions 4 X 7.5 = 30

- 11. Find the real root of the equation, $x^3 2x 5 = 0$, correct up to three decimal places using Newton-Raphson method.
- 12. Evaluate $\oint \frac{dz}{z-2}$ around a i) circle |z-2| = 4 and ii) |z| = 25
- 13. Show that a set $S = \{(1,2,1), (2,1,0), (1,-1,2)\}$ forms a basis in IR³
- 14. Define the term contraction. Get the inner product and outer product of tensors A_m^l and B_r^{pq}
- 15. Prove that $\frac{1}{\sqrt{1-2xt+2}} = \sum_{n=0}^{\infty} P_n t^n$, where P_n stands for Legendre polynomials
- 16. Evaluate $J_{1/2}(x)$, where J stand for Bessel's functions.

PART C

Answer any four questions

- 4 X 12.5 = 50
- 17. Find the Eigen values and Eigen vectors of the matrix $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- 18. Evaluate, using contour integration $\int_0^\infty \frac{dx}{x^6+1}$
- 19. Verify that the set of vectors $\{\vec{u}_1 = (1,0,0,-1), \vec{u}_2 = (0,1,0,-1) and \vec{u}_3 = (0,0,1,-1)\}$ is a basis of the solution space of the equation $x_1 + x_2 + x_3 + x_4 = 0$ which is a subspace of IR⁴ and orthogonalize this basis by using Gram Schmidt process. (Use Euclidean inner product).
- 20. Obtain an expression for line element in Euclidian space. Determine the conjugate metric tensor in spherical coordinates
- 21. Prove that $e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{n=-\infty}^{\infty} J_n(x)t^n$
- 22. i) Prove that $u = e^{-x}(x \sin y y \cos y)$ is harmonic.
 - ii) Evaluate $\oint \frac{\sin^6 z}{(z \frac{\pi}{6})^3} dz$ if c is the circle |z| = 7

\$\$\$\$\$\$\$