M.Sc.DEGREE EXAMINATION - PHYSICS

FIRSTSEMESTER - NOVEMBER 2017

17/16PPH1MCO4 /PH1820- MATHEMATICAL PHYSICS - I

Date: 10-11-2017
Dept. No. \square

PART A

Answer all questions

1. Write the algorithm of Runge-kutta method of solving differential equations
2. Sketch the graph $y=\sin 3 x$
3. If $f(z)=\ln (1+z)$, expand $f(z)$ in Taylor's series about $z=0$.
4. Show that $\int f(z) d z$ is independent of the path followed Cauchy's theorem
5. Show that there is no scalar $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that $\alpha_{1}(1,0,1,0)+\alpha_{2}(1,0,-2,1)+\alpha_{3}(2,0,1,2)=$ (1,-2,2,3)
6. Evaluate $\|\vec{u}+\vec{v}\|$ for $\vec{u}=(1,0,-1,2)$ and $\vec{v}=(2,1,3,-1)$
7. If x^{i} and x^{-i} are independent coordinates of a point, $\frac{\partial x^{i}}{\partial x^{-P}} \cdot \frac{\partial x^{-P}}{\partial x^{j}}=\delta_{j}^{i}$
8. Define piezoelectric tensor
9. Find $\Gamma\left(\frac{-1}{2}\right)$
10. Arrive at the solution of $\int_{0}^{\frac{\pi}{2}} \sin \theta d \theta$ using the knowledge of special functions

PART B

Answer any four questions $4 \times 7.5=\mathbf{3 0}$

11. Find the real root of the equation, $x^{3}-2 x-5=0$, correct up to three decimal places using Newton-Raphson method.
12. Evaluate $\oint \frac{d z}{z-2}$ around a i) circle $|z-2|=4$ and ii) $|z|=25$
13. Show that a set $S=\{(1,2,1),(2,1,0),(1,-1,2)\}$ forms a basis in IR^{3}
14. Define the term contraction. Get the inner product and outer product of tensors A_{m}^{l} and $B_{r}^{p q}$
15. Prove that $\frac{1}{\sqrt{1-2 x t++^{2}}}=\sum_{n=0}^{\infty} P_{n} t^{n}$, where P_{n} stands for Legendre polynomials
16. Evaluate $J_{1 / 2}(x)$, where J stand for Bessel's functions.

PART C

Answer any four questions

17. Find the Eigen values and Eigen vectors of the matrix $\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$
18. Evaluate, using contour integration $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$
19. Verify that the set of vectors $\left\{\vec{u}_{1}=(1,0,0,-1), \vec{u}_{2}=(0,1,0,-1)\right.$ and $\left.\vec{u}_{3}=(0,0,1,-1)\right\}$ is a basis of the solution space of the equation $x_{1}+x_{2}+x_{3}+x_{4}=0$ which is a subspace of IR^{4} and orthogonalize this basis by using Gram Schmidt process. (Use Euclidean inner product).
20. Obtain an expression for line element in Euclidian space. Determine the conjugate metric tensor in spherical coordinates
21. Prove that $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}$
22. i) Prove that $u=e^{-x}(x \sin y-y \cos y)$ is harmonic.
ii) Evaluate $\oint \frac{\sin ^{6} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$ if c is the circle $|z|=7$
