LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2017
*PH 1503 / PH 1502 / PH 1500 - PROPERTIES OF MATTER \& ACOUSTICS

Date: 06-11-2017
Time: 01:00-04:00

PART - A

Answer ALL Questions :
($\mathbf{1 0} \times 2=20$ marks)
[1]. What is Poissons's ratio?
[2]. Write the units of stress and strain
[3]. What do you mean by terminal velocity?
[4]. State the principle of diffusion pump.
[5]. Find the amount of work done if a soap bubble is slowly enlarged from a radius of 0.1 m to a radius of 0.2 m . Surface tension is $30 \times 10^{-3} \mathrm{Nm}^{-1}$.
[6]. Define angle of contact.
[7]. Distinguish between transverse and longitudinal waves.
[8]. What is resonance?
[9]. State the similarities between ultrasonic and acoustical waves.
[10]. Mention the factors deciding the good acoustical design of an auditorium.

PART - B

Answer ANY FOUR Questions :
($4 \times 7.5=30$ marks)
[11]. Obtain the relation between Young's modulus, rigidity modulus and bulk modulus.
[12]. Explain the working of Pirani gauge with necessary theory.
[13]. Discuss the Jaegar's method of determination of surface tension.
[14]. (a) Obtain the differential equation of wave motion.
(b) At a time $t=0$, a train of waves has the form, $\mathrm{y}=4 \sin 2 \pi(\mathrm{x} / 100)$. The velocity of the wave is 30 cm / s. Find the equation giving the wave form at a time $\mathrm{t}=2 \mathrm{~s}$.
[15]. Discuss the piezo electric method of production of ultrasonic waves.
[16]. Calculate the apparent pitch of a note when the observer is at rest and source is in motion.

PART - C

Answer ANY FOUR Questions:
(4 $X 12.5=50$ marks $)$
[17]. (a) Outline the theory of a cantilever.
(b) Explain Koening's method of determination of Young's modulus.
[18]. (a) Obtain Poiseuille's formula for the flow of liquid through a capillary tube.

$$
(8+4.5)
$$

(b) Discuss the pressure head and length of tube correction for Poiseuile's formula.
[19]. (a) Discuss the theory of pressure difference across a curved surface with special cases.

$$
(7.5+5)
$$

(b) Calculate the work done in spraying a spherical drop of water of $10^{-3} \mathrm{~m}$ radius into million droplets, all of the same size. The surface tension of water is $72 \times 10^{-3} \mathrm{Nm}^{-1}$.
[20]. (a) Obtain the expression for the energy transfer per second through progressive waves.
(b) A source of sound has frequency of 512 Hz and amplitude of 0.25 cm . What is the flow of energy across a square cm per second if the velocity of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$ and the density of air is $0.00129 \mathrm{~g} \mathrm{~cm}^{-3}$.
[21]. (a) Derive Sabine's reverberation formula.
(b) A hall of volume $5500 \mathrm{~m}^{3}$ is found to have a reverberation time of 2.3 s . The sound absorbing surface of the hall has an area $750 \mathrm{~m}^{2}$. Calculate the average absorption coefficient.
[22]. (a) A steel wire of diameter $3.6 \times 10^{-4} \mathrm{~m}$ and length 4 m extends by $1.8 \times 10^{-3} \mathrm{~m}$ under a load of 1 kg and twists by 1.2 radians when subjected to a total torsional torque of $4 \times 10^{-5} \mathrm{Nm}$ at one end. Find the values of Young's modulus, rigidity modulus and Poisson's ratio.
(b) Explain why a hollow rod is a better shaft than a solid one of the same mass, length and material.

