B.Sc.DEGREE EXAMINATION -PHYSICS
 THIRD SEMESTER - NOVEMBER 2017
 PH 3506- MATHEMATICAL PHYSICS

Date: 04-11-2017
Time: 09:00-12:00
Dept. No.
\square

PART - A

Answer ALL the questions:
($10 \times 2=20$ Marks $)$

1. Is $\mathrm{f}(\mathrm{z})=\sin z$ an analytic function?
2. Express $\mathrm{f}(\mathrm{z})=\frac{1}{3+4 \mathrm{i}}$ in the form of $\mathrm{a}+\mathrm{ib}$
3. Define symmetric and antisymmetric matrices.
4. Prove that the eigenvalues of a Hermitian matrix are real.
5. Check whether $\vec{A}=\overrightarrow{12 i}+\overrightarrow{4 j}-\overrightarrow{6 k}$ and $\overrightarrow{B=} \overrightarrow{6 i}+\overrightarrow{2 j}-\overrightarrow{3 k}$ are parallel or perpendicular.
6. Define a periodic function with an example.
7. Write down Simpson's one third rule.
8. Define the gradient of a scalar function.
9. Define odd and even functions and give one example each.
10. Write the algorithm of Euler's method.

PART - B

Answer any four questions:
(4 x $7.5=30$ Marks)
11. Solve the equations using matrices
$4 x+2 y+z+3 u=0 ; \quad 6 x+3 y+4 z+7 u=0 ; \quad 2 x+y+u=0$.
12. a) State and prove Cauchy's Integral Theorem.
b) Using Cauchy's Integral Formula, evaluate $\int_{c} \frac{2 z^{2}+z}{z-1} d z ;[z]=7$.
13. If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ Show that (i) $\operatorname{curl} \vec{r}=0$ (ii) $\operatorname{curl}\left(\vec{r} / r^{3}\right)=0$.
14. Find the solution of $d y / d x=x+y$ from $x=0$ to 0.2 by Euler's method.
15. Prove that div curl $\mathrm{A}=0 ; \operatorname{curl} \operatorname{grad} \varphi=0$.
16. Obtain a Fourier series for $f(x)=e^{x}-\pi<x<\pi$.

PART - C

Answer any four questions:

17 Find the eigenvalues and the normalized eigenvectors of $\mathrm{A}=\left(\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right)$.
18. Derive the trapezoidal rule. Use trapezoidal and simpson's one third rule to evaluate the approximate value of $\int_{0}^{1} d x(1+x)$ corrected to 3 decimal places taking $\mathrm{h}=0.25$
19. Derive the Cauchy - Riemann equations in polar form.
20. State and prove Gauss Divergence theorem. Using it evaluate
$\iint\left(x^{3} d y d z+y^{3} d z d x+z^{3} d y d x\right)$ Over the surface of the sphere S of radius. (6.5+6)
21. Find the Fourier series expansion of the periodic function having period 2π where
$f(x)=x^{2} \quad-\pi \leq x \leq \pi$. Hence find the sum of the series $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$
22 Verify Cayley Hamilton theorem for the matrix $\mathrm{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1\end{array}\right)$.

