LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FIFTH SEMESTER – NOVEMBER 2019

16/17UPH5ES01 – PROBLEMS SOLVING SKILLS IN PHYSICS

IG/170PH5ES01 - PROBLEMS SOLVING SKILLS IN PHYSICS							
Date: 06-11-2019 Time: 09:00-12:00	Dept. No.			Max. : 100 Marks	3		
Part-A							
ANSWER ALL THE QU	ESTIONS			20x	2=40		
1. An object moving with uniform acceleration covers 10 m in 4 th second and 20 m in 8 th second. The acceleration of the object in ms ⁻² is							
a) 2.0	b) 1.25	c) 2.5	d) 5				
2. A train is moving towards east and a car is going along north both with same speed. The observed direction of car to the passenger in the train is :							
a)east-north direction of the three	b) west-north	n direction	c) south-	east direction d)	none		
3. A sphere of mass10 kg moving with a speed of 5 ms ⁻¹ is stopped on collision with another sphere of mass 20 kg moving with 2 ms ⁻¹ speed in the same direction on a friction less surface. The speed in ms ⁻¹ of the sphere after collision will be,							
a)5 b) 3.5	c) 4.5 d) 1	0					
4. A circle of radius 1 m is at rest. The area of the circle with respect to frame moving with speed 0.8c is							
a)0.8 m ²	b) 0.6 m^2	c) 1 m^2	d) 1.8 m ²				
 5. The equation of state of given gas is P(v-b) = nRT where b is constant, n is the number of moles and R is the Universal gas constant, when 2 moles of this gas undergo reversible isothermal expansion from v to 3v, work done by the gas is 							
a) 2RT ln $\left(\frac{2v-b}{v-b}\right)$	b) 3RT $\ln\left(\frac{3v-b}{v-b}\right)$	c) 3RT ln ($\frac{2v}{v-v}$	$\frac{b}{b}$) d) 2RT lr	$\left(\frac{3v-b}{v-b}\right)$			
6. Morning breakfast gives 5000 cal to a 60 kg person. The efficiency of person is 30 %. The height up to which the person can climb up by using energy obtained from breakfast is							
a) 5 m b) 10.5	m c) 15	m	d) 16.5 m				
 The value of root mean square speed of molecule of hydrogen at N.T.P is (The Boltzmann constant is 1.38 x 10⁻²³ J/degree and Avogadro number is 6x 10²⁶(Kg. mole)⁻¹) 							

SEAT LIA VESTIN

a)2038 ms ⁻¹	b) 1838 ms ⁻¹	c) 1683 ms ⁻¹	d) 1083 ms ⁻¹				
8. A mass of dry air a	at NTP is compressed to	$(\frac{1}{3\gamma})^{\text{th}}$ of its original	I volume suddenly. If $= 1.4$ the final				
pressure would be							
a) 32 atm	b) 128 atm	c) 1/32 atm	d) 150 atm				
9. Electromagnetic waves are in nature							
a) Transverse d) Elliptical	b) Longitude	c) Both	transverse and longitude				
10. A thin conducting wire is bent into circular loop of radius r and placed in a time dependent field $\hat{B} = B_0 e^{-\alpha t} \hat{k}$ where $B_0 > 0$ and $u > 0$ such that plane of loop is perpendicular to $\hat{B}(t)$. then the induced emf in the loop is							
a) $\pi r^2 \alpha B_0 e^{-\alpha t}$ b) $\pi r^2 B_0 e^{-\alpha t}$ c) $-\pi r^2 \alpha B_0 e^{-\alpha t}$ d) $-\pi r^2 B_0 e^{-\alpha t}$							
11. The charge density can be found using the Maxwell's equation							
a) ∇ . $\varepsilon_0^* = \frac{\rho}{\varepsilon_0}$	b) $\nabla . \vec{x} = \frac{\rho}{\varepsilon_0}$	c) $\nabla X = \frac{\rho}{\varepsilon_0}$	d) $\nabla X \vec{\beta} = \frac{\rho}{\varepsilon_0}$				
12. Electrostatic field should satisfy the Maxwell's equation							
a) $\nabla \times E = 0$	b) $\nabla \times B = 0$	c) $\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$	d) $\nabla \times \mathbf{E} = \frac{\rho}{\varepsilon_0}$				
13. If A and B are Hermitian operators then (AB+BA) is							
a) Non-Hermitian b) Hermitian c)Skew hermitian d) Unitary							
14. The commutation relation [x, p _x]=							
a)iħ b) ħ	a c) i	d) h					
15. The general Heisenberg uncertainty relation is							
a) $\Delta x \Delta p \geq \frac{\hbar}{2}$	b) $\Delta x \Delta p \ge \frac{1}{2}$	c) $\Delta x \Delta p \ge \frac{\pi}{2}$	d) $\Delta x \Delta p \ge \pi$				
16. The eigen values of matrix $A = \begin{pmatrix} 1 & -i \\ i & -1 \end{pmatrix}$ is							
a) $\pm \sqrt{2}$ b) $\pm \sqrt{3}$	c) $\pm \sqrt{5}$ d) $\pm \sqrt{2}$	6					
17. The SI unit of co-efficient of viscosity is							
a) $m^2 Ns^{-1}$ b) Ns m ⁻² c) Nm d) Nm ⁻¹							
18. Two resistances $R_1=(100\pm3)$ and $R_2=(150\pm2)$ are connected in series. What is their equivalent resistance?							
a) $250 \pm 5 \Omega$ b) $250 \pm 3 \Omega$ c) $250 \pm 6 \Omega$ d) $250 \pm 4 \Omega$							

19. The buoyant force experienced by a submerged body in a fluid is equal to

a) $\rho g V$ b) $\rho g h$ c) ρg d) g h V

- 20. The maximum possible error in the sum of two quantities is equal to the ------of the absolute errors in the individual quantities
 - a) sum b) difference c) zero d) product

Part-B

ANSWER ANY **TEN** QUESTIONS

- 1. The motion of a particle is given by $a = t^3 3t^2 + 8$ where 'a' is the acceleration in ms⁻² and 't' is the time in seconds. The velocity of the particle at t = 1 second is 6.25m/s and the displacement is 8.8 meters. Calculate the displacement and velocity at t = 2 seconds.
- 2. Calculate the angular momentum of conical pendulum about its pivot point and the bob. The pendulum is in steady circular motion with constant angular velocity ' '.
- 3. A statellite of mass m_s revolving in a circular orbit of radius r_s around the earth of mass M has a total energy E. Find its angular momentum.
- 4. At what temperature is the root mean square velocity equal to the escape velocity from the surface of the earth for hydrogen and for oxygen?
- 5. Two Carnot engines A and B are operated in series. The first one A receives heat at 900 K and rejects to a reservoir at temp T K. The second engine B receives the heat rejected by the first engine and then reject to a heat reservoir at 400 K. Calculate the temperature T for this situation
- a) if the efficiency of both engines are same.
- b) if the work output are same for both engines
- 6. A certain system is found to have Gibbs free energy given by $G = RT \ln \left(\frac{aP}{(RT)^{\frac{5}{2}}}\right)$ where a and R are constants. Find the specific heat at constant pressure C_p .
- 7. Three charges each equal to Q are placed at the three corners (A,B and C) of a square of side L. Then find the magnitude of electric field at the fourth corner.
- 8. A long solenoid of radius 'a' is driven by alternating current so that field inside is sinusoidal $\vec{B}(t)=B_0 \cos t$ $\omega t \hat{k}$. A circular loop of wire of radius $\frac{a}{2}$ and resistance R is placed inside the solenoid and co-axial with it. Find the current induced in the loop as a function of time.
- 9. An electromagnetic wave is represented by the following form $k^2 = E_0 \sin (5 \times 10^{-8}z 10t)\hat{y}$ travels in the unknown medium. Determine the unknown medium?

10x6=60

- 10. An electron is considered in an infinite potential well of length 'a'
- a) Calculate the probability of finding the electron between x=0 to x=a/2 in first excited state.
- b) Calculate the expectation vale of \hat{P}_x in the first excited state.
- 11. The state of quantum particle moving in the infinite square well potential is given by $\Psi = 5\varphi_1 + 2\varphi_2 3i\varphi_3$. If the energy of this quantum particle is measured, calculate
- a) The probability of getting E_1 , E_2 and E_3
- b) The expectation value of Energy
- 12. A particle in the infinite square well has its initial wave function an even mixture of the first two stationary states $\Psi(x, 0) = A[\Psi_1(x) + \Psi_2(x)]$
- a) normalize $\Psi(x, 0)$ b)Find $\Psi(x, t)$ and $|\Psi(x, 0)|^2$
- 13. Plot of a graph for the function $y=4x^2+2x$ taking x values between 0 to 10.
- 14. a) The voltage across a wire is (100 ± 5) V and the current passing through it is (10 ± 0.2) A find the resistance of the wire.
- b) The temperature of two bodies measured by a thermometer are $t_1=(20\pm0.5)^\circ C$ and $t_2=(50\pm0.5)^\circ C$. Calculate the temperature difference and the error.
- 15. A physical quantity x is given by $x = \frac{a^2 b^3}{c\sqrt{a}}$. If the percentage errors of measurement in a, b, c and d are 4%, 2%, 3% and 1% respectively. Then calculate the percentage error in x.

@@@@@@@@@