LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - CHEMISTRY
 THIRD SEMESTER - NOVEMBER 2019

16/17/18UPH3ALO1 - PHYSICS FOR CHEMISTRY - I

Date: 06-11-2019
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART A

ANSWER ALL QUESTIONS:
($10 \times 2=20$ Marks $)$

1. Draw and explain velocity time graph.
2. What is rigidity modulus?
3. Define Poisson's ratio.
4. Find the energy stored in a wire of 5 m length and $10^{-3} \mathrm{~m}$ in diameter when it is stretched by $3 \times 10^{-3} \mathrm{~m}$ due to load. Young's modulus of material is $2 \times 10^{11} \mathrm{Nm}^{-2}$.
5. State Boyle's law.
6. Write Ideal gas equation and explain its significance.
7. What is Unit Cell of crystal lattice?
8. The lattice constant for a unit cell of aluminium is 4.049 A. Calculate the spacing of (2 20) plane?
9. State the postulates of special theory of relativity.
10. According to Einstein's theory of relativity when a mass moving to the speed of light will possess infinite mass, but photons does not exhibit the phenomenon. Why?

PART B

ANSWER ANY FOUR QUESTIONS:

($4 \times 7.5=30$ Marks)
11. Determine the time period of oscillation of a liquid in a U-tube.
12. a) Derive the expression for energy stored in a wire.
b) Calculate the elastic energy store up in a wire originally 5 metre long and $10^{-3} \mathrm{~m}$ in diameter which has been stretched by $3 \times 10^{-4} \mathrm{~m}$ due to load of 10 kg
13. a) Derive an expression for work done by gas in adiabatic expansion.
b) A gas has a volume of $0.02 \mathrm{~m}^{3}$ at a pressure of $2 \times 10^{5} \mathrm{~Pa}$ and temperature of 27 C .

It is heated at constant pressure until its volume increases to $0.03 \mathrm{~m}^{3}$. Calculate the external work done.
14. State and derive Bragg's law of X-ray diffraction.
15. a) The length of a moving rod is measured to be exactly half its proper length. What is the speed of the rod, relative to the observer at rest?
b) Derive Einstein's mass energy equation.
16. Derive the expression to determine the angle of contact using Quinke's tube experiment.

PART C

ANSWER ANY FOUR QUESTIONS:

17. Derive the expression for time period of oscillations in simple pendulum.
18. Derive Poiseuille's formula for the rate of flow of liquid through a capillary tube.
19. a) State Avogadro's Hypothesis and hence derive the general gas equation.
b) One litre of an ideal gas at a pressure of 6 atm undergoes an adiabatic expansion until its pressure drops to one atmosphere and volume increases to 2 litre. Find the work done during the process. [$\gamma=1.4$]
20. a) The lattice constant of a metal with cubic lattice is $2.88 \AA$. The density of metal is $7200 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the number of unit cells present in 1 kg of the metal.
b) Explain the rotating crystal method to determine the interplanar spacing of a crystal.
21. a) Describe Michelson- Morley experiment and discuss its negative results.
b) How fast would a rocket have to go relative to an observer for its length to be contracted to 99% of its length at rest?
22. Obtain the Lorentz transformation equations in relativity.
