LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – CHEMISTRY

THIRD SEMESTER – NOVEMBER 2019

16/17/18UPH3AL01 - PHYSICS FOR CHEMISTRY - I

Date: 06-11-2019 Time: 01:00-04:00

PART A

Dept. No.

ANSWER ALL QUESTIONS:

- 1. Draw and explain velocity time graph.
- 2. What is rigidity modulus?
- 3. Define Poisson's ratio.
- 4. Find the energy stored in a wire of 5m length and 10^{-3} m in diameter when it is stretched by 3 x 10^{-3} m due to load. Young's modulus of material is 2×10^{11} Nm⁻².
- 5. State Boyle's law.
- 6. Write Ideal gas equation and explain its significance.
- 7. What is Unit Cell of crystal lattice?
- 8. The lattice constant for a unit cell of aluminium is 4.049 Å. Calculate the spacing of (2 2 0) plane?
- 9. State the postulates of special theory of relativity.
- 10. According to Einstein's theory of relativity when a mass moving to the speed of light will possess infinite mass, but photons does not exhibit the phenomenon. Why?

PART B

ANSWER ANY FOUR QUESTIONS:

- 11. Determine the time period of oscillation of a liquid in a U-tube.
- 12. a) Derive the expression for energy stored in a wire. (5) b) Calculate the elastic energy store up in a wire originally 5 metre long and 10^{-3} m in diameter which has been stretched by 3×10^{-4} m due to load of 10 kg (2.5)(5)
- 13. a) Derive an expression for work done by gas in adiabatic expansion.

b) A gas has a volume of 0.02 m³ at a pressure of 2×10^5 Pa and temperature of 27 C.

It is heated at constant pressure until its volume increases to 0.03m³. Calculate the external work done.

14. State and derive Bragg's law of X-ray diffraction.

15. a) The length of a moving rod is measured to be exactly half its proper length. What is the speed of the rod, relative to the observer at rest? (2.5)

 $(4 \times 7.5 = 30 \text{ Marks})$

Max.: 100 Marks

(10 x 2 = 20 Marks)

(2.5)

b) Derive Einstein's mass energy equation.

16. Derive the expression to determine the angle of contact using Quinke's tube experiment.

PART C

	ANSWER ANY FOUR QUESTIONS:	(4 x 12.5 = 50 Marks)
17.	Derive the expression for time period of oscillations in simple pendulum.	
18.	Derive Poiseuille's formula for the rate of flow of liquid through a capillary	tube.
19.	a) State Avogadro's Hypothesis and hence derive the general gas equation.	(8)
	b) One litre of an ideal gas at a pressure of 6 atm undergoes an adiabatic expansion until its pressure	
	drops to one atmosphere and volume increases to 2 litre. Find the work done	during the process. [γ =1.4]
		(4.5 Marks)
20.	a) The lattice constant of a metal with cubic lattice is 2.88 Å. The density of metal is 7200 kg/m^3 .	
	Calculate the number of unit cells present in 1 kg of the metal.	(4.5)
	b) Explain the rotating crystal method to determine the interplanar spacing of	f a
	crystal.	(8 Marks)
21.	a) Describe Michelson- Morley experiment and discuss its negative results.	(10)
	b) How fast would a rocket have to go relative to an observer for its length	to be
	contracted to 99% of its length at rest?	(2.5 Marks)
22	Obtain the Lorentz transformation equations in relativity	

22. Obtain the Lorentz transformation equations in relativity.

@@@@@@@

(5)