LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER - NOVEMBER 2019

18/17/16PPH1MC04/PH 1820/PPH 1504 – MATHEMATICAL PHYSICS - I

Date: 07-11-2019 Time: 01:00-04:00

PART A

ANSWER ALL THE QUESTIONS

- 1. Write the algorithm of Runge-kutta method of solving 1st order differential equation y' = y - x, y(0) = 1.
- 2. Sketch the graph $y = \cos x$.
- 3. What are equipotential surfaces? Write its characteristic equation.

Dept. No.

- 4. Show that $e^{i\alpha}$ is an operator.
- 5. Find the norm of (1,7,-2) in \mathbb{R}^3 with standard inner product.
- 6. Define the terms positivity and point of symmetry of vector spaces.
- 7. Obtain an expression for $P_2(x)$ where 'P' stands for Legendre polynomials.
- 8. Write the orthogonality relation of Bessel's polynomials..
- 9. Prove that $\delta_i^i \delta_k^j = \delta_k^i$
- 10. State Hooke's law.

PART B

ANSWER ANY FOUR QUESTIONS

- 11. Compute the real root of $\sqrt[3]{18}$.
- 12. Derive Cauchy-Riemann conditions for a function to be analytic.
- 13. Show that the vectors u and v of a Euclidean space are orthogonal if and only if $u + v \|^2 = \|u\|^2 + \|v\|^2$.
- 14. i) Evaluate $\int_{0}^{1} \frac{dx}{\sqrt{-\ln x}}$ using the knowledge of special functions. ii) Evaluate $\int_{0}^{\infty} x^{3}e^{-x} dx$

15. i) Show that the sum of two tensors of the same order and type is again a tensor of the same order and type as the given tensor.

ii) Show that a symmetric tensor of the second order has only $\frac{n(n+1)}{2}$ different components.

16. Using, Newton-Raphson method, evaluate $\overline{18}$.

PART C

ANSWER ANY FOUR QUESTIONS

- 17. Find the root of the equation $2x log_{10}x = 7$, using Newton Raphson method.
- 18. State and prove Cauchy's theorem.
- 19. Let v be the vector space of all polynomials in an determinate x, over the real field R of degree atmost 2. In v, if we define inner product by $f(x), g(x) \in v$ as $\langle f, g \rangle = \int_{-1}^{+1} f(x)g(x)dx$ starting from $1, x, x^2$ of v obtain orthonormal basis.
- 20. Prove that $\int_{-1}^{1} [P_n(x)^2] dx = \frac{2}{2n+1}$
- 21. Find the components of Euclidean metric tensor and obtain the expression for the line element in cylindrical coordinates.
- 22. Evaluate $\frac{2\pi}{0} \frac{d\theta}{13+5\sin\theta}$ using contour integration.

4 x 7.5 - 30 Marks

Max.: 100 Marks

10 x 2 = 20 Marks

$4 \ge 12.5 = 50$ Marks

1