\square Max. : 100 Marks
Time: 01:00-04:00

PART A

ANSWER ALL THE QUESTIONS

$10 \times 2=20$ Marks

1. Write the algorithm of Runge-kutta method of solving $1^{\text {st }}$ order differential equation $y^{\prime}=y-x, y(0)=1$.
2. Sketch the graph $y=\cos x$.
3. What are equipotential surfaces? Write its characteristic equation.
4. Show that $e^{i \alpha}$ is an operator.
5. Find the norm of $(1,7,-2)$ in R^{3} with standard inner product.
6. Define the terms positivity and point of symmetry of vector spaces.
7. Obtain an expression for $P_{2}(x)$ where ' P ' stands for Legendre polynomials.
8. Write the orthogonality relation of Bessel's polynomials..
9. Prove that $\delta_{j}^{i} \delta_{k}^{j}=\delta_{k}^{i}$
10. State Hooke's law.

PART B

ANSWER ANY FOUR QUESTIONS

11. Compute the real root of $\sqrt[3]{18}$.
12. Derive Cauchy-Riemann conditions for a function to be analytic.
13. Show that the vectors u and v of a Euclidean space are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
14. i) Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{-\ln x}}$ using the knowledge of special functions.
ii) Evaluate $\int_{0}^{\infty} x^{3} e^{-x} d x$
15. i) Show that the sum of two tensors of the same order and type is again a tensor of the same order and type as the given tensor.
ii) Show that a symmetric tensor of the second order has only $\frac{n(n+1)}{2}$ different components.
16. Using, Newton-Raphson method, evaluate $\sqrt{18}$.

PART C

ANSWER ANY FOUR QUESTIONS

17. Find the root of the equation $2 x-\log _{10} x=7$, using Newton - Raphson method.
18. State and prove Cauchy's theorem.
19. Let v be the vector space of all polynomials in an determinate x , over the real field R of degree a.most 2 . In v , if we define inner product by $f(x), g(x) \in v$ as $\langle f, g\rangle=\int_{-1}^{+1} f(x) g(x) d x$ starting from $1, x, x^{2}$ of v obtain orthonormal basis.
20. Prove that $\int_{-1}^{1}\left[P_{n}(x)^{2}\right] d x=\frac{2}{2 n+1}$
21. Find the components of Euclidean metric tensor and obtain the expression for the line element in cylindrical coordinates.
22. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{13+5 \sin \theta}$ using contour integration.
