LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
B.S. DEGREE EXAMINATION - ADV. ZOO., MATHS, PHYSICS, PLANT BIO., & BIO.		
FOURTH SEMESTER – APRIL 2015		
ST 4209 - MATHEMATICAL STATISTICS		
Date : 25/04/2015 Dept. No. Time : 09:00-12:00 Max. : 100 M	arks	
Section A		
Answer all the questions10 x 2	=20 Marks	
1. Write the sample points when three fair coins are flipped simultaneously.		
2. When three events are said to be mutually independent ?		
3. If $f(x) = e^{-x}$, $x > 0$ find $E(X)$.		
4. Show that standard normal distribution has mean 0 and variance 1.		
5. If 10 unbiased coins are tossed simultaneously find the probability of getting at least 8 heads.		
6. Write any four characteristics of normal distribution.		
7.Define marginal and conditional distributions.		
8. Define F distribution.		
9. When an estimator is called unbiased ?		
10. Define a simple and composite hypothesis.		
Section B		
Answer any five questions 5 x 8 =	40 Marks	
11. State and prove Boole's inequality.		
12. If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$ and $P(A \cap B) = \frac{1}{6}$ find (i) $P(A \mid B)$ (ii) $P(B \mid A)$		
(iii) $P(A B^c)$ (iv) $P(A^c B)$		
13. Show that under certain conditions binomial tends to Poisson distribution.		
14. If $f(x) = 6x (1-x)$, $0 < x < 1$, zero elsewhere, compute P ($\mu - 2\sigma < X < \mu + 2\sigma$).		
15. Derive the moment generating function of binomial distribution and hence find mean and variance.		
16. State and prove Chebyshev's inequality.		
17. If X ₁ , X ₂ ,,X _n is a random sample from N(0, θ), $\theta > 0$ find the maximum		
likelihood estimator of θ .		
18. If $f(x_1, x_2) = 12x_1x_2(1-x_2)$, $0 < x_1 < 1$, $0 < x_2 < 1$, zero elsewhere find		
(i) the marginal distributions of X_1 and X_2 .		
(ii)the conditional distribution of X_1 given $X_2 = x_2$ and X_2 given $X_1 = x_1$.		

Section C

Answer any two questions	2 x 20 = 40 Marks
19. (a) If two fair dice are thrown simultaneously and sum is noted, find the probabilit	у
that the sum is (a) 5 (b) less than 7 (c) greater than 9 (d) between 6 and 10 inclusive.	
(b) Consider 3 urns. Urn 1 contains 5 red 6 blue and 7 black marbles. Urn 2 contai	ns 6 red
8 blue and 4 black marbles. Urn 3 contains 7 red 5 blue and 6 black marbles. Th	e probabilities
of selecting the urns are respectively $1/3$, $\frac{1}{2}$ and $1/6$ respectively. An urn is cho	osen at random and
3 marbles are chosen from it. They are found to be 1 blue and 2 black marbles.	What is the
probability that the chosen marbles have come from Urn 1, Urn 2 or Urn 3.	
	(8+12)
20. (a) Derive the moment generating function of normal distribution.	
(b) If X is N(μ, σ^2) so that P(X < 89) =0.90 and P(X < 94) = 0.95 find μ and σ^2 .	(10 +10)
21. If $f(x, y) = x+y$ $0 < x < 1$, $0 < y < 1$, zero elsewhere find	
(a) the conditional mean and variance of Y given $X = x$.	
(b) the correlation coefficient of X and Y.	(10+10)
22.(a) Derive the probability density function of Student's t distribution.	
(b) Derive the mean and variance of F distribution.	(10+10)
