LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

(GBES犮 DEGREE EXAMINATION - ADV. ZOO., MATHS, PHYSICS, PLANT BIO., \& BIO.
FOURTH SEMESTER - APRIL 2015
ST 4209-MATHEMATICAL STATISTICS
Date : 25/04/2015
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

Section A

Answer all the questions

$10 \times 2=20$ Marks

1. Write the sample points when three fair coins are flipped simultaneously.
2.When three events are said to be mutually independent?
2. If $f(x)=e^{-x}, x>0$ find $E(X)$.
3. Show that standard normal distribution has mean 0 and variance 1 .
4. If 10 unbiased coins are tossed simultaneously find the probability of getting at least 8 heads.
5. Write any four characteristics of normal distribution.
7.Define marginal and conditional distributions.
6. Define F distribution.
7. When an estimator is called unbiased ?
8. Define a simple and composite hypothesis.

Section B

Answer any five questions
$5 \times 8=40$ Marks
11. State and prove Boole's inequality.
12. If $\mathrm{P}(\mathrm{A})=1 / 2, \mathrm{P}(\mathrm{B})=1 / 4$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=1 / 6$ find (i) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ (ii) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ (iii) $P\left(A \mid B^{c}\right)$ (iv) $P\left(A^{c} \mid B\right)$
13. Show that under certain conditions binomial tends to Poisson distribution.
14. If $\mathrm{f}(\mathrm{x})=6 \mathrm{x}(1-\mathrm{x}), 0<\mathrm{x}<1$, zero elsewhere, compute $\mathrm{P}(\mu-2 \sigma<\mathrm{X}<\mu+2 \sigma)$.
15. Derive the moment generating function of binomial distribution and hence find mean and variance.
16. State and prove Chebyshev's inequality.
17. If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ is a random sample from $\mathrm{N}(0, \theta), \theta>0$ find the maximum likelihood estimator of θ.
18. If $f\left(x_{1}, x_{2}\right)=12 x_{1} x_{2}\left(1-x_{2}\right), \quad 0<x_{1}<1,0<x_{2}<1$, zero elsewhere find
(i) the marginal distributions of X_{1} and X_{2}.
(ii)theconditional distribution of X_{1} given $X_{2}=x_{2}$ and X_{2} given $X_{1}=x_{1}$.

Section C

Answer any two questions
19. (a) If two fair dice are thrown simultaneously and sum is noted, find the probability that the sum is (a) 5 (b) less than 7 (c) greater than 9 (d) between 6 and 10 inclusive.
(b) Consider 3 urns. Urn 1 contains 5 red 6 blue and 7 black marbles. Urn 2 contains 6 red 8 blue and 4 black marbles. Urn 3 contains 7 red 5blue and 6 black marbles. The probabilities of selecting the urns are respectively $1 / 3,1 / 2$ and $1 / 6$ respectively. An urn is chosen at random and 3 marbles are chosen from it. They are found to be 1 blue and 2 black marbles. What is the probability that the chosen marbles have come from Urn 1, Urn 2 or Urn 3.
20. (a) Derive the moment generating function of normal distribution.
(b) If X is $\mathrm{N}\left(\mu, \sigma^{2}\right)$ so that $\mathrm{P}(\mathrm{X}<89)=0.90$ and $\mathrm{P}(\mathrm{X}<94)=0.95$ find μ and σ^{2}.
21. If $f(x, y)=x+y \quad 0<x<1,0<y<1$, zero elsewhere find
(a) the conditional mean and variance of Y given $X=x$.
(b) the correlation coefficient of X and Y .
22.(a) Derive the probability density function of Student's t distribution.
(b) Derive the mean and variance of F distribution.

