LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - APRIL 2016

ST 1822-STATISTICAL MATHEMATICS

Date: 02-05-2016 \square Max. : 100 Marks
Time: 01:00-04:00
Answer all the questions.

1. a) For any $a, b \in R$, prove that $\left||a|-|b| \leq|a-b|\right.$. Also prove that $\left\{\left|s_{n}\right|\right\}$ converges to $| L \mid$ if $\lim _{n \rightarrow \infty} s_{n}=L$.

OR

b) If $\lim _{n \rightarrow \infty} s_{n}=L$ and $\lim _{n \rightarrow \infty} t_{n}=M$ then prove that $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=(L+M)$.
c) (i) Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ converges.
(ii) If $\sum a_{n}$ is dominated by $\sum b_{n}$ and if $\sum b_{n}$ converges absolutely, then prove that $\sum a_{n}$ converges absolutely.

OR

d) State and prove Leibnitz theorem.
2) a) Verify the hypothesis and the conclusion of the mean value theorem for the following functions $f(x)=\log x$ in $[1, e]$ and $f(x)=\frac{x}{x-1}$ in $2<x<4$.

OR

b) If the real valued function f is differentiable at the point $a \in R$ then prove that f is continuous at ' a '.
c) (i) State and prove Taylor's theorem.
(ii) Define continuity, jump discontinuity and removable discontinuity.

OR

d) (i) State and prove Mean value theorem for derivatives.
(ii) State and prove inverse function theorem.
3. a) For any partition $\operatorname{Pof}[a, b]$, prove that $m[f ; P](b-a) \leq L[f ; P] \leq U[f ; P] \leq M[f ; P](b-a)$.

OR

b) If $f \in R[a, b]$ is continuous at $x_{0} \in[a, b]$ and if $F(x)=\int_{a}^{x} f(t) d t$ where $a \leq x \leq b$ then prove that

$$
\begin{equation*}
F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right) . \tag{5}
\end{equation*}
$$

c) (i) Let f be bounded function on the closed bounded interval $[a, b]$ then prove that f is Riemann integrable if and only if for every $\varepsilon>0$ there exists a subdivisions P of $[a, b]$ such that $U[f ; P]-$ $L[f ; P]<\varepsilon$.
(ii) Test the convergence of the following integrals (a) $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ and (b) $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$

OR

d) (i) State and prove First Fundamental theorem of Calculus.
(ii) If f^{\prime} and g^{\prime} are continuous on $[a, b]$, then prove that $\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-$ $\int_{a}^{b} f^{\prime}(x) g(x) d x$.
4. a) Prove that a square matrix A is singular if and only if its columns are linearly dependent.

OR

b) State and prove Cauchy-Schwarz inequality.
c) (i)) If the linear system of m equations in n unknowns $A X+B=0$ is consistent then prove that a complete solution thereof is given by a complete solution of the corresponding homogeneous system $A X=0$ plus any particular solution of $A X+B=0$.
(ii) If the $k n$-vectors $A_{1}, A_{2}, \ldots, A_{k}$ are linearly independent but the vectors $A_{1}, A_{2}, \ldots, A_{k}, B$ are linearly dependent then prove that B is a linear combination of $A_{1}, A_{2}, \ldots, A_{k}$.

OR

d) (i) Let V be a vector space over F, not consisting of the zero vector alone then prove that V contains atleast one set of linearly independent vectors $A_{1}, A_{2}, \ldots, A_{k}$ such that the collection of all linear combinations X of the form $X=t_{1} A_{1}+t_{2} A_{2}+\cdots+t_{k} A_{k}$ where $t^{\prime} s$ are arbitrary scalars from F, is precisely V. Moreover, prove that the integer k is uniquely determined for each V.
(ii) Express the vector $(1,-2,5)$ as a linear combination of the vectors $(1,1,1),(1,2,3)$ and $(2,-1,1)$ in R^{3}, where R is the field of real numbers.

5 a) Prove that the characteristic vectors associated with distinct characteristic roots of a real symmetric matrix A are orthogonal.

OR

b) Let A, P be an $n \times n$ matrix. Then prove that A and $P^{-1} A P$ have the same characteristic equation
c) State and prove Gram Schmidt orthonormalization process theorem and hence apply it to the vectors $(1,0,1),(1,0,-1),(0,3,4)$ to obtain an orthonormal basis for R^{3}.

OR
d) Reduce the matrix $A=\left(\begin{array}{ccc}11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6\end{array}\right)$ to diagonal form.

