LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER – APRIL 2016

ST 2815 - TESTING STATISTICAL HYPOTHESIS

Date: 20-04-2016 Time: 01:00-04:00

LUCEAT LUX VES

Dept. No.

Max.: 100 Marks

(10 X 2 = 20)

SECTION - A : ANSWER ALL THE QUESTIONS

- Write any two examples for simple and composite hypothesis. 1
- Define uniformly most powerful test. 2
- State Generalized Neyman-Pearson Theorem 3
- What is MLR property? 4

- Define one parameter exponential family. 5
- Define -similar test 6
- 7 Justify the following statement: "A test with Neyman structure is similar"
- Give an example of an invariant decision problem 8
- 9 When do we say function is maximal invariant?
- Briefly explain the principles of LRT 10

SECTION – B: ANSWER ANY FIVE THE QUESTIONS

11	if X~B(1, θ), ().25, 0.5 and for testime $\theta = 0.5$ against K: $\theta = 0.25$.	
	Let $\phi_1(x) = \begin{cases} 0 = 0 \\ 1 & \text{if } x = 1 \\ 0 & \text{if } x = 1 \end{cases}$ and $\phi_2(x) = \begin{cases} 0 & \text{if } x = 0 \\ 0 & \text{if } x = 1 \end{cases}$	(8)
	Calculate Size and Power of the test function $C_{0,0} = 1$	
12	Let X be random variable with probability mass function under H and K are given by	
	X 1 2 3 4 5 6	
	f ₀ (x) 0.01 0.01 0.01 0.01 0.01 0.95	
	$f_1(x)$ 0.05 0.04 0.03 0.02 0.01 0.85	(8)
	Suppose = 0.03, find the test function by using Nayman-Pearson's lemma and find	
	the probability of Type II error and Power of the test.	
13	Let denote the power of a most powerful test of level for testing simple hypothesis	
		(8)
	H against simple alternative K. Prove that (i) and (ii) $<$ unless $p_0 = p_1$.	
14	Let X ⁱⁱⁱ X ^{ie} e a random sample from a Cauchy distribution with parameter (1,	(8)
1.5). Show that this family does not have MLR property.	(0)
15	Derive \bigcup_{M} PU level α test for testing the hypothesis H:	(9)
	K: < 1 or > 2 for one parameter exponential family.	(8)
16	Let X have the distribution P \mathcal{P} and T be a sufficient statistic for \mathcal{P} . Show that a	
	percessary and sufficient condition for all similar tests have Neyman structure is that	
	necessary and sufficient condition for all similar tests have Neyman structure is that	(8)
	the family ${\mathcal P}^{\mathbf{T}}$ of distributions of T is boundedly complete	
17	Let $X_{1,2}^{inv}$ X_{n}^{or} be a random sample from P() and $Y_{1,2}^{otv}$ Y_{n}^{i} be a random sample	
	from $P(\mu)$. Derive UMPU level test for testing the hypothesis	(8)
		(0)
	H: μ against K: > μ .	
18	Obtain the Likelihood ratio Test for equality of means of 'k' Normal populations with	
	a common variance.	(8)

- (5X 8 = 40)

SECTION - C: ANSWER ANY TWO QUESTIONS

- 19 State and prove the necessary and sufficient condition of Nyman - Pearson (20) fundamental Lemma. a) Show that a necessary and surricient condition for the family of distribution to 20 (10) have MLR property is that $\frac{\partial L_{\partial g} f(\mathbf{x}, \mathbf{f})}{\partial \theta \partial \mathbf{x}}$ exists and is non-negative. b) Let $X_{1,2,2,...,n}^{+R}$ b a randon $\overline{\partial x} \xrightarrow{exi} S \xrightarrow{s} \sum_{i,j=1}^{n} \sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n}$ $f(x,\theta) = e^{-(x-\theta)}; \theta < \zeta < 0$ (10) Does $\{f_0(x)\}\$ belong to the exponential family? Does $\{f_0(x)\}\$ have MLR? a) If X^{r_0} (2)... X^{r_0} a random sample from N(μ , 2), with both parameters are 21 Ratio unknown. Derive Likelihood Test of level for testing (10) H: $^{2} = ^{2}_{0}$ versus K $^{2} \neq ^{2}_{0}$ b) Define multi Parameter exponential family. Also mention its objectives and (10) properties. If X ~ B(m, and Y ~ B(n, are independent, where $m \neq n$, then Derive the 22 (20)
 - UMPUT of size for testing H: $p_1 \leq p_2$ against K: $p_1 \geq p_2$.