LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2016
ST 2962 - MODERN PROBABILITY THEORY

Date: 27-04-2016
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

SECTION A

Answer ALL of the following.

(10x2=20 marks)

1. Can the union of two fields be a field? Explain.
2. Define: Monotone Field.
3. Define: Discrete Probability Space.
4. Give an example for the minimal field containing the class itself.
5. Define Mixture of Distributions.
6. Let X be a continuous Gamma Variate, derive, $\mathrm{M}_{\mathrm{x}}(\theta)$.
7. Derive the Harmonic Mean of Beta Distribution of first kind.
8. Explain almost sure convergence.
9. When will you say, a random variable is centered at some constant c and its expectation?
10. Explain law of large numbers?

SECTION B

Answer any FIVE from the following

11. Let ξ_{i} be the class of all intervals of the form $(a, b),(a<b) a, b \in R$, but arbitrary. Then P.T. $\sigma\left(\xi_{i}\right)=B$.
12. Explain: Induced Probability Space with an example.
13. Show that Standard Gamma variate converges in distribution to Standard Normal variate.
14. If $\sum \sigma_{n}^{2}<\infty$ then, prove that, $\sum\left(\mathrm{X}_{\mathrm{k}}-\mathrm{E}\left(\mathrm{X}_{\mathrm{k}}\right)\right)$ converges in probability.
15. State and prove the properties of Expectation of Non negative random variables.
16. If $X_{n} \xrightarrow{p} X$ then, show that there exists a subsequence $\left\{\mathrm{X}_{\mathrm{nk}}\right\}$ of $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ which converges a.s. to X .
17. State and prove the properties of characteristic function.
18. Explain in detail the applications of Central limit theorem.

SECTION C

Answer any TWO from the following

19. i) Prove that The intersection of arbitrary number of fields is a field.
ii) Prove that $X_{n} \xrightarrow{p} c$ implies that $F\left(X_{n}\right) \longrightarrow 0$ for $\mathrm{x}<\mathrm{c}, F\left(X_{n}\right) \longrightarrow 1$ for $\mathrm{x} \geq \mathrm{c}$ and conversely.
20. i) Let $X_{n} \xrightarrow{L} X, Y_{n} \xrightarrow{L} c$, then P.T.
a. $\quad X_{n}+Y_{n} \xrightarrow{L} X+c$
b. $\quad X_{n} Y_{n} \xrightarrow{L} c X$
c. $X_{n} / Y_{n} \xrightarrow{L} X / c$.
ii) Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence of i.i.d. r.v.'s with characteristic function $\varphi(\mathrm{u})$. Then $\mathrm{S}_{\mathrm{n}} / \mathrm{n} \xrightarrow{p} \mathrm{E}(\mathrm{X})$.
21. i) Derive the Kolmogorov Inequalities.
ii) State and prove the necessary and sufficient condition for a series of random variables to converge a.s.
22. i) State and prove Liapounov's theorem.
ii) Explain Central limit theorem as a generalisation of law of large numbers.
