LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER - APRIL 2016

ST 3506 – MATRIX AND LINEAR ALGEBRA

Date: 02-05-2016 Time: 09:00-12:00

Answer ALL the questions.

PART A

Dept. No.

(10 x 2 = 20 Marks)

Max.: 100 Marks

1. Define equality of matrices.

- 2. Define a symmetric matrix.
- 3. Define singular matrix with an example.
- 4. Find rank of A, where A is given by

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

- 5. How do you define vector space?
- 6. Define basis and dimension in a vector space.
- 7. When a transformation is said to be one to one and onto?
- 8. Define a unitary matrix.

Answer any FIVE questions.

9. Find the characteristic root of the matrix.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$

10. Show that if λ is a characteristic root of a matrix A, the λ^k is the characteristic root of A^k

PART B

(5 x 8 = 40marks)

- 11. If A is any nxm matrix such that AB and BA are both defined. Show that B is an mxn matrix.
- 12. If A is any square matrix, then show that A + A' is symmetric and A A' is Skew symmetric.
- 13. Prove that every invertible matrix possesses a unique inverse.
- 14. Show that the matrix $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ equivalent to I₃ by finding the rank.
- 15. Prove that a basis of a subspace S, can always be selected out of a set of vectors which span S.
- 16. Show that the set of 3 vectors $X_1 = (1 \ 0 \ 0)$, $X_2 = (0 \ 1 \ 0)$ and $X_3 = (0 \ 0 \ 1)$ is linearly independent.
- 17. (a) State the properties of linear transformation.
 - (b) Prove that a linear transformation $L: V_n$ W_n is completely determined if it is specified at the basis element V_n .
- 18. Determine eigen values and eigen vectors of the matrix.

$$\mathbf{A} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}.$$

Answer any TWO questions.

PART C

- 19.(a) If A and B are two matrices such that AB = BA then show that for every positive integer n, by induction
 (i) ABⁿ = BⁿA (ii) (AB)ⁿ = AⁿBⁿ.
 - (b) Let A and B be two square matrices of order n and λ be a scalar. Then prove that
 (i) Tr (λ A) = λ Tr(A)
 (ii) Tr (A + B) = Tr (A) + Tr (B).
- 20. (a) Find the rank of the matrix

Λ —	[1	2	3	0	
	2	4	3	2	
A –	3	2	1	3	•
	6	8	7	5_	

(b) Show that

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a).$$

21. (a) Let $X_1 = (1, 1, -1)$, $X_2 = (4, 1, 1)$ and $X_3 = (1, -1, 2)$ be a basis of R_3 and let L: $R_3 = R_2$ be the linear transformation such that $LX_1 = (1, 0)$, $LX_2 = (0, 1)$, $LX_3 = (1, 1)$. Find L.

(b) Solve the following equations by cramer's rule.

$$2x - y + 3z = 9x + y + z = 6x - y + z = 2.$$

22. (a) Find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}.$$

(b). State and prove Cayley- Hamilton theorem.

\$\$\$\$\$\$