LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - APRIL 2016
ST 3506 - MATRIX AND LINEAR ALGEBRA

Date: 02-05-2016
Time: 09:00-12:00

PART A

Answer ALL the questions.

1. Define equality of matrices.
2. Define a symmetric matrix.
3. Define singular matrix with an example.
4. Find rank of A, where A is given by

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
4 & 2 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

5. How do you define vector space?
6. Define basis and dimension in a vector space.
7. When a transformation is said to be one to one and onto?
8. Define a unitary matrix.
9. Find the characteristic root of the matrix.

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]
$$

10. Show that if λ is a characteristic root of a matrix A, the λ^{k} is the characteristic root of A^{k}.

PART B

Answer any FIVE questions.
($5 \times 8=40 \mathrm{marks}$)
11. If A is any nxm matrix such that $A B$ and $B A$ are both defined. Show that B is an $m x n$ matrix.
12. If A is any square matrix, then show that $A+A^{\prime}$ is symmetric and $A-A^{\prime}$ is Skew - symmetric.
13. Prove that every invertible matrix possesses a unique inverse.
14. Show that the matrix $\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3\end{array}\right]$ equivalent to I_{3} by finding the rank.
15. Prove that a basis of a subspace S, can always be selected out of a set of vectors which span S .
16. Show that the set of 3 vectors $X_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right), X_{2}=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$ and $X_{3}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$ is linearly independent.
17. (a) State the properties of linear transformation.
(b) Prove that a linear transformation $L: V_{n} \rightarrow W_{n}$ is completely determined if it is specified at the basis element V_{n}.
18. Determine eigen values and eigen vectors of the matrix.

$$
\mathrm{A}=\left[\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right] .
$$

19.(a) If A and B are two matrices such that $A B=B A$ then show that for every positive integer n, by induction
(i). $\mathrm{AB}^{\mathrm{n}}=\mathrm{B}^{\mathrm{n}} \mathrm{A}$
(ii) $(A B)^{n}=A^{n} B^{n}$.
(b) Let A and B be two square matrices of order n and λ be a scalar. Then prove that
(i) $\operatorname{Tr}(\lambda \mathrm{A})=\lambda \operatorname{Tr}(\mathrm{A})$
(ii) $\operatorname{Tr}(\mathrm{A}+\mathrm{B})=\operatorname{Tr}(\mathrm{A})+\operatorname{Tr}(\mathrm{B})$.
20. (a) Find the rank of the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 3 & 2 \\
3 & 2 & 1 & 3 \\
6 & 8 & 7 & 5
\end{array}\right]
$$

(b) Show that

$$
\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a}) .
$$

21. (a) Let $X_{1}=(1,1,-1), X_{2}=(4,1,1)$ and $X_{3}=(1,-1,2)$ be a basis of R_{3} and let $\mathrm{L}: \mathrm{R}_{3} \rightarrow R_{2}$ be the linear transformation such that $\mathrm{LX}_{1}=(1,0), \mathrm{LX}_{2}=(0,1), \mathrm{LX}_{3}=(1,1)$. Find L .
(b) Solve the following equations by cramer's rule.

$$
\begin{aligned}
2 x-y+3 z & =9 \\
x+y+z & =6 \\
x-y+z & =2
\end{aligned}
$$

22. (a) Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 2 & 3 \\
1 & 1 & 2
\end{array}\right]
$$

(b). State and prove Cayley- Hamilton theorem.

