## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - APRIL 2016

## ST 3816 - STOCHASTIC PROCESS

Date: 27-04-2016
Time: 09:00-12:00

## PART A

Answer ALL the questions:
( $10 \times 2=20$ marks)

1) Define transient state and recurrent state of a Markov Chain.
2) Obtain the periodicity of a Markov chain with status 0,1 and transition probability

$$
P=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 0
\end{array}\right]
$$

3) Define a renewal process.
4) Define a martingale $\left\{X_{n}\right\}$ with respect to $\left\{Y_{n}\right\}$.
5) Write the PGF of a Poisson process.
6) Show that communication of a Markov chain satisfies transitivity.
7) Write the density of the inter arrival time in a Poisson process.
8) Explain branching processes.
9) Define excess life and current life.
10) Define a stationary process.

## PART B

Answer any FIVE questions:
11) Explain discrete queueing Markov chain.
12) State and prove Chapman-Kolmogrov equation.
13) Derive the differential equations for a pure birth process.
14) Show that $\mathrm{X}_{\mathrm{n}}=\left(\sum Y_{k}\right)^{2}-n \sigma^{2}$ is a martingale if $\mathrm{Y}_{\mathrm{i}}$ are iid $\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}}\right)=0, \mathrm{Y}_{0}=0$ and $\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}}^{2}\right)=\sigma^{2}$.
15) Compute ${ }^{\mathrm{t}}$ he ${ }^{1}$ imiti $^{\text {ng }}{ }^{\text {distribution }} \pi_{\mathrm{i}}, i=0,1,2$ for the transition probability matrix,

$$
\mathrm{P}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

16) For a renewal process show that $M(t)=F(t)+F^{*} M(t)$.
17) For a renewal process, obtain $E\left[W_{N(t)+1}\right]$.
18) If $i \leftrightarrow j$ then show that $d(i)=d(j)$.

## PART C

## Answer any TWO questions:

19) a) Show that a state i is recurrent if and only if $\sum_{n} P_{i i}^{n}=\infty$.
b) Show that one dimensional random walk on the set of integers is a Markov chain.
20) a) Let $P$ be a regular transition probability matrix on the status $0,1,2$, then show that the limiting distribution satisfies $\pi_{\mathrm{i}}=\sum_{k} \pi_{\mathrm{k}} \mathrm{p}_{\mathrm{ki}}$ and $\sum_{\mathrm{k}} \pi_{\mathrm{k}}=1$.
b) Show that for $\mathbf{P}=\left[\begin{array}{cc}1-a & b \\ b & 1-b\end{array}\right]$ the n step transition probability is

$$
\mathrm{P}^{\mathrm{n}}=\frac{1}{a+b}\left[\begin{array}{ll}
b & a \\
b & a
\end{array}\right]+\frac{(1-a-b)^{n}}{a+b}\left[\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right] .
$$

21) a) State the postulates of a Poisson process. Derive $P_{n}(t)$ for a Poisson process.
b) Let $\mathrm{X}_{1}(\mathrm{t})$ and $\mathrm{X}_{2}(\mathrm{t})$ be two independent Poisson processes. Obtain the conditional distribution of $\mathrm{X}_{1}(\mathrm{t})$ given $\mathrm{X}_{1}(\mathrm{t})+\mathrm{X}_{2}(\mathrm{t})=\mathrm{n}$.
22) a) Obtain the probability generating function relations for a Branching process.
b) Discuss about the probability of extinction in a Branching process.
