LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - APRIL 2016

ST 3817 - STATISTICAL QUALITY CONTROL

Date: 28-04-2016	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00	L	

PART A

Answer ALL the questions:

 $(10 \times 2 = 20)$

- 1) Define assignable causes of variation?
- 2) When do you prefer S chart to R chart?
- 3) Define β risk.
- 4) Explain process capability.
- 5) State any two advantages of multivariate control chart.
- 6) Mention any two uses of an OC curve for control charts.
- 7) Define sequential sampling plan.
- 8) How lots have to be chosen in acceptance sampling?
- 9) What is an average run length?
- 10) Define specification limits.

PART B

Answer any FIVE questions:

 $(5 \times 8 = 40)$

- 11) Explain the OC function and average run length calculation of the control chart for non- conformities.
- 12) Explain cyclic pattern, mixture, shift in process level, trend and stratification.
- 13) The following table gives the number of non-conformities observes in 16 successive samples of 100 printed circuit boards. Set up an appropriate control chart to find statistical control.

Sample no.	1	2	3	4	5	6	7	8
Number of	16	18	12	15	24	21	28	20
non-conformitites								
Sample no.	9	10	11	12	13	14	15	16
Number of	25	19	18	21	16	22	22	19
non-conformitites								

- 14) Describe the concept of geometric moving average control chart.
- 15) Explain confidence internals and tests on Process Capability ratios.
- 16) A process is in statistical control with $\bar{X} = 41.5$ and $\bar{R} = 2.5$, n = 3 specifications are 40 ±5. The quality characteristic is normally distributed.
 - (a) Estimate the potential capability (b) estimate the actual capability and obtain C_{pm}.
- 17) Explain SIPOC diagram and its uses
- 18) Explain the double sampling plan and obtain the expression for AOQ and ATI.

19) (a) Obtain the control limits for \bar{X} and R charts.

(6)

(b) For the data in the following table were collected from a process manufacturing power supplies. The variable of interest is output voltage and n = 5.

Sample number	1	2	3	4	5	6	7	8	9	10
numbe	103	102	104	105	104	106	102	105	106	104
R	4	5	2	11	4	3	7	2	4	3
Sample number	11	12	13	14	15	16	17	18	19	20
numtse	105	103	102	105	104	105	106	102	105	103
R	4	2	3	4	5	3	5	2	4	2

- I. Compute the control limits for the future production.
- II. Assume that the quality characteristic is normally distributed. Estimate the process standard deviation.
- III. What are the $3-\sigma$ natural tolerance limits of the process?
- IV. What would be your estimate of the process fraction nonconforming if the specifications on the characteristics were 105 ± 2 ? (5 + 2 + 2+5)
- 20) (a) Explain the method of tabular CUSUM for monitoring the process mean. (8)
 - (b) Prepare a tabular CUSUM for the following data with $\mu = 120$, K = 3, H = 10 X_i values are 122, 110, 115, 110, 128.
 - (c) Repeat the calculations with a headstart of H/2 = 4. What is your conclusion now?
- 21) (a) Write down the procedure of Hotelling T² control chart.
 - (b) Set up a moving average control chart for the following data using w = 3 with target mean value as 12.02 and standard deviation of 0.05.

Observation i	1	2	3	4	5	6	7	8	9
Xi	12	12.05	12.5	12.06	12.08	11.95	11.85	12	11.96
Observation i	10	11	12	13	14	15	16	17	18
Xi	12.08	13	12.92	11.88	12.03	12.05	12.07	12.45	13

- 22) (a) Explain the DMAIC procedure in detail.
 - (b) How DMAIC problem solving process can be used to improve service quality in railway ticket booking process?
