LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER - APRIL 2016

ST 4201 - MATHEMATICAL STATISTICS

Date: 28-04-2016 Time: 09:00-12:00

Dept. No.

Max.: 100 Marks

Section -A

Answer all the questions :

- 1. Write the sample space for tossing four fair coins.
- 2. If three fair dice are flipped, find the probability of the sum to be either 17 or 18.
- 3. State two properties of distribution function.
- 4. Define moment generating function.
- 5. If ten unbiased coins are tossed, find the probability of getting at least two heads.
- 6. Define chi-square distribution with n degrees of freedom.
- 7. Let X have the probability mass function $p(x) = (1/2)^x$, x=1,2,3,..., zero elsewhere. Find the probability mass function of $Y = X^3$.
- 8. Define marginal and conditional distributions.
- 9. Provide the sufficient conditions for consistency of an estimator.
- 10. Define simple and composite hypothesis.

Section -B

Answer any five questions:

5 X 8 = 40 marks

- 11. (a) State addition theorem on probability for n events. (2 marks)
 - (b) State and prove Bayes' theorem.(6 marks)
- 12. If P(A) = 1/3, P(B) = 1/5 and P(A = B) = 1/9, find (i) $P(A = B^{C})$ (ii) $P(A^{C} = B)$
 - (iii) $P(A^{C} B^{C})$ and (iv) $P(A^{C} B^{C})$. (4 X 2 = 8 marks)
- 13. Show that under certain conditions binomial distribution tends to Poisson.
- 14. Derive mean and variance of rectangular distribution over [a,b].
- 15. State and prove Boole's inequality.
- 16. Find mean deviation from mean for normal distribution.
- 17. Show that the random variables X_1 and X_2 with joint p.d.f.

 $f(x_1,x_2) = 12 x_1x_2(1-x_2)$, $0 < x_1 < 1$, $0 < x_2 < 1$, zero elsewhere, are stochastically independent.

18. If X_1, X_2, \dots, X_n is a random sample from normal distribution with mean θ_1 and variance θ_2 . find the maximum likelihood estimators of θ_1 and θ_2 .

$10 \ge 2 = 20 \text{ marks}$

Section-C

Answer any two questions:

2 X 20 = 40 marks

- 19. (a) State and prove Chebyshev'sinequality.(8 marks)
 - (b) Derive mean and variance of beta distribution of first kind.(12 marks)
- 20. (a) Derive the moment generating function of normal distribution.(8 marks)
 - (b) Let the marks obtained in a certain examination follow the normal distribution with mean 45 and standard deviation 10. If 1,000 students appeared at the examination , calculate the number of students scoring:(i) less than 40 marks(ii) more than 60marks

(iii) between 40 and 50 marks. (12 marks)

21. Let X₁ and X₂ have the joint p.d.f. $f(x_1,x_2) = x_1 + x_2$, $0 \le x_1 \le 1$, $0 \le x_2 \le 1$, zero elsewhere.

Find the conditional mean and variance of X_1 given $X_2 = x_2$, $0 \le x_2 \le 1$ and X_2 given $X_1 = x_1$, $0 \le x_1 \le 1$.

22. Derive the probability density function of F distribution. Also find mean and variance.
