LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

FOURTH SEMESTER - APRIL 2016

ST 4503/ST 5504/ST 5500 – ESTIMATION THEORY

Date: 20-04-2016	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00		

PART – A

Answer ALL the Questions

- 1. Define Parameter.
- 2. Define Unbiased Estimator.
- 3. What is meant by Sufficiency?
- 4. State Factorization Theorem.
- 5. Write any four methods for estimating a parameter.
- 6. Define Likelihood function.
- 7. Define Baye's estimators.
- 8. Define completeness of a family of distributions.
- 9. What is the need of studying confidence interval?
- 10. Define confidence limits.

<u>PART – B</u>

(5 x 8 = 40 marks)

 $(10 \times 2 = 20 \text{ marks})$

Answer any FIVE the Questions

- 11. Explain the concept of consistent estimator and also show that in sampling from a $N(\mu,\sigma^2)$ population, the sample mean is a consistent estimator of μ .
- 12. If T_1 and T_2 are unbiased estimators of θ , show that one can get infinitely many unbiased estimators of θ .
- 13. Let $x_1, x_2, x_3, ..., X_n$ be a random sample from N(μ, σ^2) population. Find the sufficient estimators for $\mu \& \sigma^2$.
- 14. Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a sample of size 'n' and find its variance.
- 15. Discuss the concept involved in the method of Least Squares.
- 16. Distinguish between posterior and prior distributions.
- 17. Find 100(1- α) % confidence intervals for the parameter μ when σ^2 is unknown in the normal distribution.
- 18. Explain about the method of minimum chi-square.

<u> PART – C</u>

Answer any TWO Questions

- 19.a) State and prove Cramer-Rao Inequality.
 - b) If T_n is a consistent estimator of $\gamma(\theta)$ and $\Psi\{\gamma(\theta)\}$ is a continuous function of $\gamma(\theta)$, then prove that $\Psi(T_n)$ is a consistent estimator of $\Psi\{\gamma(\theta)\}$.
- 20.a) State and prove Rao-Blackwell theorem.
 - b) Show that for large samples, method of maximum likelihood and method of minimum chi-square provide identical estimators.
- 21.a) Describe the procedure of Maximum Likelihood Estimation.
 - b) In random sampling from normal population $N(\mu,\sigma^2)$, find the maximum likelihood estimators (MLE) for i) μ when σ^2 is known ii) σ^2 when μ is known.
- 22. Obtain $100(1-\alpha)$ % confidence limits for the difference of means when variances are known in sampling from two normal populations.

\$\$\$\$\$\$\$