## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

**B.Sc.** DEGREE EXAMINATION – **STATISTICS** 

SIXTH SEMESTER - APRIL 2016

PART - A

ST 6607/ST 6604/ST 6601 – OPERATIONS RESEARCH

Dept. No. Date: 18-04-2016 Time: 09:00-12:00

## Answer ALL the questions:

- 1. State the applications of operations research.
- 2. What is meant by degeneracy in a transportation problem?
- 3. Write the steps involved in formulating the LPP.
- 4. Find the basic feasible solution of  $x_1+x_2+2x_3=4$

 $X_1 - x_2 + x_3 = 1$ 

- 5. Explain the term artificial variable and explain its uses in LPP.
- 6. Give an example of LPP having the feasible region as a square
- 7. Formulate the dual of the following LPP

Min.  $z = 3x_1 + x_2$ S.t  $x_1 + 4x_2 \ge 5, \ 2x_1 + x_2 \ge 3, \ x_1, x_2 \ge 0.$ 

- 8. State the main difference between PERT and CPM
- 9. Define two person zero sum game.
- 10. For a payoff matrix  $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$ . What is the value of the game?

## **PART-B**

Answer any **FIVE** questions:

- 11. State the advantages of a model.
- 12. Three articles A, B and C have weight, volume and cost as given below:

А

В

4

8

|                                                                                                      | С    | 2  | 4 | 3 |  |  |  |  |
|------------------------------------------------------------------------------------------------------|------|----|---|---|--|--|--|--|
|                                                                                                      |      |    |   |   |  |  |  |  |
| The total weight cannot exceed 2,000 units and total volume cannot exceed 2,500 units. Find the      |      |    |   |   |  |  |  |  |
| number of articles to be selected from each type such that the total cost is minimum. Formulate this |      |    |   |   |  |  |  |  |
| as a linear programming prob                                                                         | olem | l. |   |   |  |  |  |  |

Weight | Volume | Cost(Rs.)

5

6

9

7

13. Solve the following LPP graphically.

Maximize  $Z = 3x_1 + 5x_2$ Subject to  $X_1 + x_2 \ge 6$  $-x_1 + x_2 \le 4$  $X_1 X_2 \ge 0$ 



Max.: 100 Marks

(10x2=20 marks)

(5x8=40 marks)

14. Apply the principle of duality to solve the following LPP. Minimize Z = 16X+16YSubject to  $2x+4y \ge 3$   $3x+2y \ge 4$ X, Y  $\ge 0$ 

15. Find the IBFS by using VAM method.

| Stores.      |            |    |    |    |               |  |  |  |
|--------------|------------|----|----|----|---------------|--|--|--|
| Warehouse.   | <b>S</b> 1 | S2 | S3 | S4 | Availability. |  |  |  |
|              |            |    |    |    |               |  |  |  |
| А            | 5          | 1  | 3  | 3  | 34            |  |  |  |
| В            | 3          | 3  | 5  | 4  | 15            |  |  |  |
| С            | 6          | 4  | 4  | 3  | 12            |  |  |  |
| D            | 4          | 1  | 4  | 2  | 19            |  |  |  |
| Requirement. | 21         | 25 | 17 | 17 | 80            |  |  |  |

16. Write down the major steps involved in decision making process.

17. Construct the network diagram for the following Activities:

B < E, F; C < G, L; E, G < H; L, H < I; L < M; H < N; H < J; I, J < P; P < Q.

18. Using principle of dominance solve the following game:

 8
 10
 9
 14

 10
 11
 8
 12

 13
 12
 14
 13

Answer any **TWO** questions:

## PART - C

(2x20=40 marks)

19. Solve the following LPP by using two phase method.

 $\begin{array}{l} \text{Min } z = 4x_1 + x_2 \\ \text{Subject to} \\ 3x_1 + x_2 = 3 \\ 4x_1 + 3x_2 \ge 6 \\ X_1 + 2x_2 \ge 4 \\ X_1, X_2 \ge 0 \end{array}$ 

20. Find the optimal solution and hence solve the following LPP by using Big "M" method.

Minimize Z= 4x+y Subject to  $3x+4y \ge 20$  $X+5y \ge 15$ X, Y  $\ge 0$ 

21. (a). Solve the following assignment problem for minimum cost.

| Job       |   |   |   |   |   |  |  |
|-----------|---|---|---|---|---|--|--|
| Operator. | 1 | 2 | 3 | 4 | 5 |  |  |
| 1         | 6 | 2 | 5 | 2 | 6 |  |  |
| 2         | 2 | 5 | 8 | 7 | 7 |  |  |
| 3         | 7 | 8 | 6 | 9 | 8 |  |  |
| 4         | 6 | 2 | 3 | 4 | 5 |  |  |
| 5         | 9 | 3 | 8 | 9 | 7 |  |  |
| 6         | 4 | 7 | 4 | 6 | 8 |  |  |

| ) For the following problem: 1. Construct a PERT net work. 2. Critical path and project duration. |     |     |     |     |     |     |     |     |     |     |      |         |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|---------|
|                                                                                                   | 1-2 | 2-3 | 2-4 | 3-5 | 4-5 | 4-6 | 5-7 | 6-7 | 7-8 | 7-9 | 8-10 | 9-10    |
| Activity                                                                                          |     |     |     |     |     |     |     |     |     |     |      |         |
| А                                                                                                 | 1   | 1   | 1   | 3   | 2   | 3   | 4   | 6   | 2   | 4   | 1    | 3       |
| В                                                                                                 | 5   | 3   | 5   | 5   | 4   | 6   | 6   | 8   | 6   | 8   | 3    | 7       |
| М                                                                                                 | 1.5 | 2   | 3   | 43  | 3   | 5   | 5   | 7   | 4   | 6   | 2    | 5       |
|                                                                                                   |     |     |     |     |     |     |     |     |     |     |      | (10+10) |

22. (a). A company produces the three products A, B and C and the pay – offs under different states of nature for demand, good, fair and poor are given as follows:

| States of nature.ProductGoodFairPoorMaximumMinimum |        |        |         |            |             |  |  |  |  |  |
|----------------------------------------------------|--------|--------|---------|------------|-------------|--|--|--|--|--|
| Flouuet                                            | UUUU   | ran    | F 001   |            |             |  |  |  |  |  |
|                                                    |        |        |         | Pay –offs. | Pay – offs. |  |  |  |  |  |
| А                                                  | 70,000 | 40,000 | -20,000 | 70,000     | -20,000     |  |  |  |  |  |
| В                                                  | 60,000 | 65,000 | -10,000 | 65,000     | -10,000     |  |  |  |  |  |
| С                                                  | 55,000 | 45,000 | 15,000  | 55,000     | 15,000      |  |  |  |  |  |

Calculate Maximax, Maximin, Minimax Regret, Hurwitz, and Laplace criterion.

(b) Solve the following game:

Player B  
Playaer A
$$\begin{bmatrix} 3 & -1 & 1 & 2 \\ -2 & 3 & 2 & 3 \\ 2 & -2 & -1 & 1 \end{bmatrix}$$
.

(10+10)

\$\$\$\$\$\$\$