LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

MLSC.DEGREE EXAMINATION - STATISTICS SECONDSEMESTER – APRIL 2017

16PST2MC01- ESTIMATION THEORY

Date: 19-04-2017 01:00-04:00

Dept. No.

Max.: 100 Marks

 $(10 \times 2 = 20)$

SECTION - A

Answer ALL the questions

- 1. Explain the problem of Point estimation.
- 2. State the different approaches to identify UMVUE
- 3. If δ is a UMVUE then show that δ + 2 is also a UMVUE.
- 4. Define Minimum Variance Bound Estimator.
- 5. Let X be random variable with pmf: $P(X = 1) = \frac{\theta}{2}$, $P(X = 2) = 1 \frac{\theta}{2}$. Find the Fishers

Information contained in X?

- 6. Let X_1 , X_2 be iid P(θ), θ >0. Show that X_1+2X_2 is not sufficient for θ .
- Define Ancillary Statistic with an example.
- 8. Explain the concept of likelihood function.
- 9. Let X follow B(1, θ), θ = 0.1,0.2. Find MLE of θ .
- 10. Define CAN estimator.

SECTION - B

Answer any FIVE questions

$$(5 \times 8 = 40)$$

11. Given an example for each of the following:

(i) U_g is empty (ii) U_g is singleton.

- 12. State and Prove a necessary and sufficient condition for an estimator to be UMVUE using uncorrelatedness approach.
- 13. Let X_1, X_2, \dots, X_n be a random sample of size n from $U[0, \theta], \theta > 0$. Find the Sufficient Statistic for θ .
- 14. Give an application of Basu's theorem.
- 15. Let X₁, X₂,...,X_n be a random sample of size n from $N(\mu, \sigma^2)$, $\mu \in \mathbb{R}, \sigma > 0$. Find UMVUE

of $\frac{\mu^2}{2}$.

suggest MVBE of $a\theta + b$, where a and b are constants such that $a \neq 0$.

17. MLE is not unique - Illustrate with an example.

18. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, 1), \mu \in R$. Let μ have the prior distribution N(0,1). Find the Bayes estimator of μ .

SECTION - C

Answer any TWO questions

- 19. (a) If UMVUE exists for the parametric function ψ(θ) then show that it must be essentially unique.
 (b) Let X₁, X₂,..., X_n be a random sample of size n from N(θ,1), θ ∈ R . Obtain the
- Cramer- Rao lower bound for estimating θ^2 . Compare the variance of the UMVUE with CRLB. (10+10)
 - 20. (a) Explain completeness and boundedly completeness with an illustration.
 - (b) State and establish Lehmann-Scheffe theorem. (10+10)
 - 21. (a) State and Prove Cramer-Rao inequality by stating its regularity conditions.
 - (b) Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0$.
 - i) Show that \overline{X} is sufficient statistic for μ when σ^2 known.
 - ii) Show that $(\overline{X}, S^2)'$ is sufficient statistic for (μ, σ^2) . (10+10)
 - 22 (a) "Blind use of Jackknife method" Illustrate with an example.
 - (b) Explain Baye's estimation with an example. (10+10)

(2x 20 = 40)