LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECONDSEMESTER - APRIL 2017

ST 2817- CATEGORICAL DATA ANALYSIS

Date: 03-05-2017 01:00-04:00

Dept. No.

Max.: 100 Marks

Section -A

Answer all the questions

 $(10 \times 2 = 20)$

- 1. Define Regression model.
- 2. What is an explanatory variable?
- 3. Define β_0 and β_1 in simple regression model.
- 4. What is the purpose of R^2 ?
- 5. Give the formula for Durbin Watson d Statistic.
- 6. Define Multicollinearity.
- 7. What is the dummy variable rule?
- 8. Define an outlier.
- 9. Define Lag variable.
- 10. Differentiate MAE and MAPE.

Section -B

Answer any five questions

(5x8=40)

- 11. Write short notes on applications of Econometrics.
- 12. What is the Variance-Inflating Factor (VIF)? How is the Variance-Inflating Factor used to detect Multicollinearity?
- 13. Explain the various problems involved in constructing multiple regression models.
- 14. Find the value of R^{2*} for following data

Y	11	8	9	7	6
X_1	6	4	5	5	3
X_2	3	7	5	6	8

- 15. Explain any two use of Residual analysis.
- 16. Explain the use of a dummy variable in a interactive form. Illustrate with an example.
- 17. Define Outlier and explain any two methods to detect outliers.
- 18. Give three reasons for Heteroscedasticity. Briefly explain.

Section - C

Answer any two questions

 $(2 \times 20 = 40)$

- 19. Derive BLUE for Regression coefficient in multiple regression models.
- 20. Consider the following data

у	13	17	15	12	14	16	17	14	18	21	13	12	15
X	13	14	19	10	14	13	15	23	25	22	12	13	23

- i. Obtain the regression equation y on x
- ii. Test the significance of the parameters at 1 % level of significance.
- iii. Find the value of y if x is 35.
- 21. Explain the procedure for testing the significance of the regression coefficient and testing the hypothesis for over all fitness of the model using ANOVA.
- 22. a) Explain and illustrate the Durbin-Watson test to detect autocorrelation.
 - b) Explain the nature of autocorrelation. Illustrate typical patterns of autocorrelation in a couple of diagrams, and compare to absence of autocorrelation.(10+10)

\$\$\$\$\$\$\$\$\$