LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS THIRDSEMESTER – APRIL 2017 ST 3815- MULTIVARIATE ANALYSIS

Date: 06-05-2017 01:00-04:00

SECTION - A

Answer ALL the questions

 $(10 \times 2 = 20)$

Max.: 100 Marks

1. Mention any two properties of multivariate normal distribution.

Dept. No.

2. If $X' = (X_1, X_2) \sim N_2 \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ then write the characteristic function of the marginal

distribution of X_1 .

- 3. In a multivariate normal distribution, show that every linear combination of the component variables of the random vector is normal. Is the converse true?
- 4. Define Hotelling's T^2 Statistic. How is it related to Mahlanobis' D^2 ?
- 5. Comment on repeated measurements design.
- 6. Describe a) Common factor b) Communality.
- 7. Explain the classification problem into two classes.
- 8. Let $(X_i, Y_i)'$ i = 1,2,3 be independently distributed each according to $N_2 \left\{ \begin{pmatrix} \mu \\ \eta \end{pmatrix}, \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \right\}$.

Find the distribution of $(\overline{X}, \overline{Y})'$.

- 9. Explain MANOVA.
- 10. Write a short note on data mining.

PART-B

Answer anyFIVE questions

(5X8=40 marks)

- 11. Find the multiple correlation coefficient between X_1 and X_2, X_3, \dots, X_p . Prove that the conditional variance of X_1 given the rest of the variables cannot be greater than unconditional variance of X_1 .
- 12. Derive the characteristic function of multivariate normal distribution.
- 13. Let $X_1, X_2, ..., X_n$ be independent $N(0, \sigma^2)$ random variables. Show that $(X'AX)/\sigma^2$ is chisquare if A is idempotent where $X = (X_1, X_2, ..., X_n)'$.

14. Obtain the linear function to allocate an object to one of the two given normal populations.

- 15. Using the Likelihood ratio procedure, develop the linear discriminant function and its variance.
- 16. Giving suitable examples explain how factor scores are used in data analysis.
- 17. What are principal components? Outline the procedure to extract principal components from a given correlation matrix.
- 18. Outline single linkage and complete linkage procedures with an example.

PART-C

Answer anyTWO questions

(2 X 20 =40marks)

19. a) Derive the distribution function of the generalized T^2 – Statistic.

b) Test $\mu = (0 \ 0)'$ at level 0.05, in a bivariate normal population with

 $\sigma_{11} = \sigma_{22} = 10$ and $\sigma_{12} = -4$, using the sample mean vector $\bar{x} = (7 - 3)'$

based on sample size 20. (15+5)

- 20. a) Define generalized variance.
 - b) Show that the sample generalized variance is zero if and if the rows of the matrix of deviation are linearly dependent.
 - c) Find the covariance matrix of the multinormal distribution which has the quadratic form $2x_1^2 + x_2^2 + 4x_3^2 x_1x_2 2x_1x_3$. (3+12+5)
- 21. Consider the two data sets from populations Π_1 and Π_2 respectively,

$$X_{1} = \begin{pmatrix} 3 & 7 \\ 2 & 4 \\ 4 & 7 \end{pmatrix} \text{ and } X_{2} = \begin{pmatrix} 6 & 9 \\ 5 & 7 \\ 4 & 8 \end{pmatrix} \text{ for which}$$
$$\bar{x}_{1} = (3 \ 6)', \ \bar{x}_{2} = (5 \ 8)' \text{ and } S_{pooled} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

a) Calculate the linear discriminant function.

b) Classify the observation $x_0' = (2 \ 7)$ to population π_1 or population π_2 using the decision rule with equal priors and equal costs. (14+6)

- 22. a) Prove that the extraction of principal components from a dispersion matrix is the study of characteristic roots and vectors of the same matrix.
 - b) Prove that under some assumptions (to be stated), variance covariance matrix can be written as $\Sigma = LL' + \Psi$ in the factor analysis model. Also

discuss the effect of an orthogonal transformation. (8+12)

\$\$\$\$\$\$\$