Date: 26-04-2017 01:00-04:00

Dept. No.

SECTION - A

Answer ALL questions.

1. Define a stochastic process with an example.
2. When do you say a Markov chain is transient or recurrent?
3. When do you say the process $\left\{\mathrm{X}_{n}\right\}$ is a Martingale?
4. Define a stationary process.
5. Write the PGF of the Poisson process.
6. Which of the following are true for a renewal process
i) $\quad N(t) \geq k$ if and only if $W_{k} \leq t$
ii) $\quad N(t)<k$ if and only if $W_{k}>t$?
7. Define a branching process.
8. Write the distribution of excess life for a Poisson renewal process.
9. State the Basic limit theorem on Markov chains.
10. Messages arrive at a telegraph office as a Poisson process with mean 3 messages per hour. What is the probability that no message arrive during 8.00 to 12.00 noon.

SECTION - B

Answer any FIVE questions.

11. State and prove Chapman - Kolmogorov equations for a Markov chain.
12. Explain the discrete queueing Markov chain.
13. Determine the classes, periodicity of a Markov chain with states $0,1,2,3$ and transition probability

	0		1	2	3
	[0		0	1	0
matrix 1	1		0	0	
2	1/2		1/2	0	
	1/3		1/3	1/3	

And also find out whether they are recurrent or transient.
14. Write the postulates of pure birth process and obtain the differential equations. Solve for $\mathrm{n}=0,1$.
15. Prove any two properties of the Poisson process.
16. Define a renewal process. For a renewal process, show that $\mathrm{M}(\mathrm{t})=\mathrm{F}(\mathrm{t})+\int_{0}^{t} M(t-y) d F(y), t \geq 0$.
17. Show that for a branching process $\varphi_{n+1}(s)=\varphi_{n}[\varphi(s)]$.
18. For a two state process with transition probability matrix $P=\left[\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right], 0<a, b<1$. Show that $P^{n}=\frac{1}{a+b}\left[\begin{array}{ll}b & a \\ b & a\end{array}\right]+\frac{(1-a-b)^{n}}{(a+b)}\left[\begin{array}{cc}a & -a \\ -b & b\end{array}\right]$. Obtain $\lim _{n \rightarrow \infty} P^{n}$.

SECTION-C

Answer any TWO questions.

($\mathbf{2} \mathbf{x} \mathbf{2 0}=40 \mathrm{marks}$)

19. i) Prove that a state ' i ' is recurrent if and only if $\sum_{n} P_{i i}^{n}=\infty$
ii) Ifi $\leftrightarrow j$ and if ' i ' is recurrent. Prove that j is also recurrent.
iii) Discuss the recurrence of one dimensional random walk on the set of integers. $(8+5+7)$
20. a) State the postulates of the Birth and Death process. Obtain the forward and backward differential equations.
b) Using the forward differential equations, obtain $\lim _{t \rightarrow \infty} P_{i j}(t)$
21. a) Obtain the Expectation and Variance of the random sum $X_{1}+X_{2}+\ldots+X_{N}$, where X_{i} are iid, $E\left(X_{i}\right)=\mu, V\left(X_{i}\right)=\sigma^{2}, E(N)=V \quad V(N)=\tau^{2}$ and X_{i} are independent of N. Use it to find the mean and variance of the branching process.
b) Explain the probability of extinction for a branching process. Obtain the probability of extinction for the branching process with offspring distribution as $\begin{array}{llll} & : & 0 & 2\end{array}$ $P(\xi): 1 / 3 \quad 2 / 3$
$(14+6)$
22. a) Obtain the gamblers ruin (absorption into 0) by using first step analysis.
b) Consider a Markov chain with states $0,1,2,3,4,5$ and transition probability matrix
$\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 / 4 & 1 / 4 & 0 & 0 & 0 \\ 0 & 1 / 8 & 7 / 8 & 0 & 0 & 0 \\ 1 / 4 & 1 / 4 & 0 & 1 / 8 & 3 / 8 & 0 \\ 1 / 3 & 0 & 1 / 6 & 1 / 6 & 1 / 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Obtain $\lim _{n \rightarrow \infty} P_{3 i}^{n}, i=0,1,2,3,4,5$ (10+10)

