LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS THIRDSEMESTER – APRIL 2017

ST 3816- STOCHASTIC PROCESS

Date: 26-04-2017 01:00-04:00 Dept. No.

Max.: 100 Marks

SECTION - A

Answer ALL questions.

(10 x 2 = 20 marks)

- 1. Define a stochastic process with an example.
- 2. When do you say a Markov chain is transient or recurrent?
- 3. When do you say the process $\{X_n\}$ is a Martingale?
- 4. Define a stationary process.
- 5. Write the PGF of the Poisson process.
- 6. Which of the following are true for a renewal process
 - i) $N(t) \ge k$ if and only if $W_k \le t$
 - ii) N(t) $\leq k$ if and only if $W_k > t$?
- 7. Define a branching process.
- 8. Write the distribution of excess life for a Poisson renewal process.
- 9. State the Basic limit theorem on Markov chains.
- 10. Messages arrive at a telegraph office as a Poisson process with mean 3 messages per hour. What is the probability that no message arrive during 8.00 to 12.00 noon.

SECTION - B

Answer any FIVE questions.

(5 x 8=40 marks)

- 11. State and prove Chapman Kolmogorov equations for a Markov chain.
- 12. Explain the discrete queueing Markov chain.
- 13. Determine the classes, periodicity of a Markov chain with states 0,1,2,3 and transition probability

		0	1	2	3	
	0	0	0	1	0	
matrix			0	0	0	
	2	1/2	1/2	0	0	
	3	1/3	1/3	1/3	0	

And also find out whether they are recurrent or transient.

14. Write the postulates of pure birth process and obtain the differential equations. Solve for n = 0, 1. 15. Prove any two properties of the Poisson process.

16. Define a renewal process. For a renewal process, show that $M(t) = F(t) + \int M(t-y) dF(y), t \ge 0$.

17. Show that for a branching process $\varphi_{n+1}(s) = \varphi_n[\varphi(s)]$.

18. For a two state process with transition probability matrix $P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}$, 0 < a, b < 1.

Show that $P^n = \frac{1}{a+b} \begin{bmatrix} b & a \\ b & a \end{bmatrix} + \frac{(1-a-b)^n}{(a+b)} \begin{bmatrix} a & -a \\ -b & b \end{bmatrix}$. Obtain $\lim_{n \to \infty} P^n$.

SECTION-C

Answer any TWO questions.

(2 x 20=40 marks)

19. i) Prove that a state 'i' is recurrent if and only if $\sum_{n} P_{ii}^{n} = \infty$

ii) If $i \leftrightarrow j$ and if 'i' is recurrent. Prove that j is also recurrent.

- iii) Discuss the recurrence of one dimensional random walk on the set of integers. (8+5+7)
- 20. a) State the postulates of the Birth and Death process. Obtain the forward and backward differential equations.
 - b) Using the forward differential equations, obtain $\lim_{t \to \infty} P_{ij}(t)$ (15+5)
- 21. a) Obtain the Expectation and Variance of the random sum $X_1+X_2+...+X_N$, where X_i are iid, $E(X_i) = \mu$, $V(X_i) = \sigma^2$, E(N) = V $V(N) = \tau^2$ and X_i are independent of N. Use it to find the mean and variance of the branching process.
 - b) Explain the probability of extinction for a branching process. Obtain the probability of extinction for the branching process with offspring distribution as $\begin{cases} \xi & : & 0 & 2 \\ P(\xi) & : & 1/3 & 2/3 \end{cases}$

(14+6)

- 22. a) Obtain the gamblers ruin (absorption into 0) by using first step analysis.
 - b) Consider a Markov chain with states 0,1,2,3,4,5 and transition probability matrix

1	0	0	0	0	0	
0	3/4		0	0	0	
0	1/8	7/8	0	0	0	
1/4	1/4	0	1/8	3/8	0	
1/3	0	1/6	1/6	1/3	0	
0	0	0	0	0	1	

Obtain $\lim_{n \to \infty} P_{3i}^n$, i = 0, 1, 2, 3, 4, 5

(10+10)

\$\$\$\$\$\$\$