LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRDSEMESTER - APRIL 2017

ST 3817- STATISTICAL QUALITY CONTROL

Date: 28-04-2017 09:00-12:00 Dept. No.

Max.: 100 Marks

 $(10 \times 2 = 20)$

(5X8=40)

PART A

Answer ALL the questions:

- 1) Define Statistical Process Control.
- 2) Why np chart is not appropriate when sample size is varying?
- 3) What are chance and assignable causes of variation?
- 4) Define β risk.
- 5) Define process capability ratio.
- 6) State any two advantages of multivariate control chart.
- 7) How lots have to be chosen in acceptance sampling?
- 8) For p=6, m=10, n=7 and $\alpha=0.05$, find the UCL of T^2 control chart.
- 9) What is an average run length?

10) Define natural tolerance limits.

PART B

Answer any FIVE questions:

11) Explain cyclic pattern, mixture, shift in process level, trend and stratification.

12) A TiW layer is deposited on a substance using a sputtering tool. The following table contains layer thickness measurements on 20 subgroups of four substances.

Subgroup	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Xl	45	44	45	46	44	44	44	44	44	43	44	46	45	42	41
X2	49	40	44	46	45	45	42	43	46	45	47	44	46	43	44
X3	42	44	41	48	45	40	44	41	42	43	46	45	45	44	42
X4	40	42	46	47	48	49	41	40	45	46	47	47	42	42	40

Set up a control chart for mean and range.

13) Briefly explain the different types of sampling plans.

- 14) For a sequential sampling plan, find the acceptance line and rejection line for the $p_1 = 0.01$, $\alpha = 0.05$, $p_2 = 0.05$ and $\beta = 0.25$ for a sample of size 50.
- 15) Suppose that we have p = 3 quality characteristics and in correlation from all the 3 variable have variance unity and all pairwise correlation coefficients are 0.8, then in-control value of the process mean vector is $\mu = (0 \ 0 \ 0)$
- (a) Write the covariance matrix \sum
- (b) What is χ^2 control limits for $\overline{\alpha} = 0.05$
- (c) Suppose that a sample of observations results in the standardized observation vector $y' = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}$, calculate the value of the T² statistics. Is an out-control signal generated?
- (d) Calculate the diagnostic quantities d_i , i = 1,2,3 from equation. Does the information assist in identifying which process variables have shifted?

16) Explain chain sampling plan.

17) Write a short note on process capability analysis with attribute data.

18) Explain SIPOC diagram and its uses.

PART C

Answer any TWO of the following:

(2X20=40)

19) (a) Distinguish between p and np charts. Explain the situation where p and np are applicable and how are the limits obtained for these charts. (8)

(b) Control charts for \overline{X} and Rare to be established to control the tensile strength of a metal part. Assume the tensile strength is normally distributed. Thirty samples of size n = 6 parts are collected over a period of time with the following results:

 $\sum_{i=1}^{30} \overline{X_i} = 6000$ and $\sum_{i=1}^{30} R_i = 150$

- (i) Calculate control limits for \overline{X} and R.
- (ii) Both charts exhibit control. The specifications on tensile strength are 200±5. What are your conclusions regarding process capability?
- (iii) For the above \overline{X} chart, find the β -risk when the true process mean is 199.(12)
- 20) (a) Describe the concept of Exponential Moving Average Control chart.
 - (b) Suppose that a quality characteristic has a normal distribution with specification limits at USL = 100 and LSL = 90. A random sample of 30 parts results in \bar{x} = 97 and s = 1.6
- (i) Calculate a point estimate of C_{pk} and (ii) Find a 95% confidence interval on C_{pk} .

(12+8)

21) (a) Write down the procedure of Hotelling T^2 control chart.

(b) Set up a moving average control chart for the following data using w=4 with target mean value as 8.02 and standard deviation of 0.05.

Observation i	1	2	3	4	5	6	7	8	9	10
Xi	8	8.01	8.02	8.01	8	8.01	8.06	8.07	8.01	8.04
Observation i	11	12	13	14	15	16	17	18	19	20
Xi	8.05	8.04	8.03	8.05	8.06	8.04	8.05	8.06	8.04	8.02

22) (a) Explain DMAIC.

(b) How DMAIC problem solving process can be used to improve service quality in banking process?

\$\$\$\$\$\$\$\$