LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – STATISTICS
FOURTH& FIFTH SEMESTER – APRIL 2017
ST 4503 / ST 5504 - ESTIMATION THEORY

Date: 21/04/2017 09:00-12:00

Answer ALL questions.

Dept. No.

Max.: 100 Marks

10 X 2 = 20

- 1. Define Consistent estimator. Give an example.
- 2. State any two regularity conditions.
- 3. Define UMVUE.
- 4. When $X_1, X_2, X_3, \dots, X_n$ are random samples from Binomial (10, θ), suggest a sufficient statistic.

SECTION-A

- 5. Describe the Method of Maximum Likelihood estimation.
- 6. State the Least Square estimator of β_1 , in the model $Y = \beta_0 + \beta_1 X + \varepsilon$
- 7. Define risk function.
- 8. State a possible Prior distribution for the parameter λ in case of Poisson distribution with mean λ .
- 9. State the 95% confidence interval for μ , when a random sample of size 'n' is drawn from N(μ , 1).
- 10. State Rao-Blackwell theorem.

SECTION-B

Answer Any FIVE questions.

5X8 = 40

- 11. Derive an Unbiased estimator of λ in a Poisson distribution, based on a random sample of size 'n'.
- 12. If $X_1, X_2, X_3, \dots, X_n$ is random sample of size 'n' from Binomial $(1, \theta), \theta \in (0,1)$, then show

that $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ , using Neyman Factorization theorem.

- 13. Define completeness of an estimator and verify whether \bar{x} is a complete estimator in case of a random sample of size 'n' fromN(θ ,1), $\theta \in R$.
- 14. Explain the Method of Moment estimation.
- 15. State any four properties of MLE.
- 16. Describe Bayes estimation procedure.
- 17. What is a conjugate prior? Give an example.
- 18. State and prove Neyman --Fisher factorization theorem.

SECTION-C

Answer any TWO questions.	$2 \times 20 = 40$
19. a. State and prove Cramer-Rao inequality.	[12]
b. Show that the family of the Binomial distributions { B(n, θ),	$\theta \in (0,1)$, n- known } is
complete.	[8]
20. a. State and prove Lehmann-Scheffe theorem.	[10]
b. Show that UMVUE is unique, when it exists.	[10]
21. a. Explain the concept of estimation by the method of minimum c	chi-square. [8]
b. For a random sample $X_1, X_2, X_3, \dots, X_n$ from U(α, β), $\alpha < \beta$	$\alpha, \beta, \alpha, \beta \in \mathcal{R},$
obtain method of moment estimators of α and β .	[12]
22. a. Let $X_{1,}X_{2,}X_{3,\ldots}X_{n}$ be a random sample from Binomia	al $(m, \theta), \theta \in (0,1),$
m-known and let Beta(α, β) be the prior distribution for	θ . Find the
Bayesian estimator for θ .	[12]
b. If $X_1, X_2, X_3, \dots, X_n$ and $Y_1, Y_2, Y_3, \dots, Y_m$ are rand	lom samples of size 'n' and 'm'
respectively from N(μ_1, σ^2) and N(μ_2, σ^2), derive the (1- α)10	00% confidence interval for their
difference in means.	[8]
