LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

FOURTHSEMESTER - APRIL 2017

ST 4813- APPLIED EXPERIMENTAL DESIGN

Date: 18-04-2017 09:00-12:00 Dept. No.

Max.: 100 Marks

SECTION - A

Answer ALL questions. Each carries TWO marks.

 $(10 \,\mathrm{x}\,2 = 20 \,\mathrm{marks})$

- 1. What are the assumptions made in order to make the F-test valid in ANOVA?
- 2. Mention the three basic principles of experimental designs.
- 3. Give the meaning and reason for experimental error.
- 4. Write the advantages of CRD.
- 5. Show that LSD is more efficient than RBD.
- 6. How many 4 x 4 standard LSD are possible? List all of them.
- 7. List the reasons for missing the value(s) of the response variable for some experimental units.
- 8. Discuss the applications of factorial experiment in industry.
- 9. Describe any two situations where Split Plot Design can be used.
- 10. When do we say a BIBD is resolvable? Explain with an illustration.

SECTION-B

Answer any FIVE questions. Each carries EIGHT marks.

 $(5 \times 8 = 40 \text{ marks})$

 $(2 \times 20 = 40 \text{ marks})$

- 11. For analyzing the one-way classified data, state the fixed effect model, assumptions, and hypotheses and find the least square estimates of the parameters.
- 12. How will one estimate two missing observations in RBD?
- 13. Develop Yates' computational rule for calculating factorial effect totals in 2^2 and 2^3 factorial experiments.
- 14. Show that the interactions AB, AC and BC and ABC are mutually orthogonal contrasts of the treatment means, in a 2^3 factorial experiment. Also verify if AB = BA and ABC = CBA.
- 15. Describe the calculation of sum of squares due to confounded effects. Write the advantages and disadvantages of confounding.
- 16. For a BIBD with v=4, b=6, k=2, r=3, $\lambda=1$, write its incidence matrix N. Verify if (i) every row sum of N is 'r', (ii) every column sum of N is 'k', and (iii) the inner product of any two rows of N is λ .
- 17. Write an explanatory note on experiments with factors at three levels each.
- 18. How does Youden square design help in eliminating the effect of positions? What are the possibilities of obtaining Youden squares?

SECTION – C Answer any TWO questions Fach carries TWENTY marks

I disver any Two questions. Each earnes Twill of Thinkins.	$(2 \Lambda 20)$	-10 III(a K3)
19(a) Explain the objective of 'Analysis of Covariance'.		(4)
(b) Describe in detail about the implementation of ANOCOVA technique for th	e analysis	sof
one-way classified data with a single concomitant variable in CRD layout.	5	(16)
20(a) Explain the technique of analyzing a BIBD without recovery of interblock in	formatio	n.
		(10)
(b) Discuss in detail about the Analysis of Variance of 2 x 3 asymmetrical factor	orial	
design.		(10)

21(a) Explain the procedure of calculating one missing value in LSD and discuss its statistical

analysis.	(10)
(b) Give a detailed Statistical Analysis of Split-Plot-Design.	(10)
22(a) What limitation of Lattice designs was removed by evolving Partially Balanced Ind	complete
Block Design? Define a P.B.I.B design with m-associate classes.	(5)
(b) Given a PBIB design with parameters $v=b=9$, $r=k=4$, $n_1=n_2=4$, $\lambda_1=2$, $\lambda_2=1$	1.
The treatments have been numbered from 1 to 9. The blocks are (1358), (2347), (3	678),
(1269), (1567), (3459), (2468), (1489) and (2579). For the treatments 1, 2 and 5, f	ind the
first and second associates. For the treatments 1 and 2, find the p_{ik}^{i} matrix. Also	findit
for the treatments 1 and 5.	(15)