Date: 20-04-2017
09:00-12:00

Dept. No.

Section-A
Answer all the questions

Max. : 100 Marks
$10 \times 2=20$ marks

1. Define a general linear programming problem.
2. Write the dual of the following primal problem:

Maximize $z=5 x_{1}+12 x_{2}+4 x_{3}$
Subject to the constraints:
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \leq 10$
$2 x_{1}-x_{2}+3 x_{3}=8$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$.
3. Define a Quadratic Programming Problem.
4. Write the Kuhn-Tucker necessary conditions for the optimal solution of general non -linear Programming problem.
5. Define purchasing and holding costs in inventory control.
6. For a classic Economic Order Quantity(EOQ) model if $\mathrm{K}=\$ 100, \mathrm{~h}=\$ 0.05$ and $\mathrm{D}=30$ units / day and lead time is 30 days, find the optimal inventory policy and the associated cost per day.
7. Write the three assumptions in a probabilistic EOQ model.
8. Write a note on generalized Poisson queuing model.
9. How Branch and Bound method is used in solving Integer Programming Problem?
10. Write about the types of simulation.

> Section-B

Answer any five questions
$5 \mathrm{X} 8=40$ marks
11. Solve the following linear programming problem graphically:

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}$
Subject to the constraints:
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 30$
$\mathrm{x}_{1}-\mathrm{x}_{2} \geq 0$
$\mathrm{x}_{2} \geq 3$
$\mathrm{x}_{1} \leq 20$
$\mathrm{x}_{2} \leq 12$
$\mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0$.
12. Explain Big-Malgorithm in solving a linear programming problem.
13. Solve the following NLPP using Lagrange multipliers:

Minimize $\mathrm{z}=2 \mathrm{x}_{1}^{2}-24 \mathrm{x}_{1}+2 \mathrm{x}_{2}^{2}-8 \mathrm{x}_{2}+2 \mathrm{x}_{3}^{2}-12 \mathrm{x}_{3}+200$
subject to
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=11$
$\mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0, \mathrm{x}_{3} \geq 0$.
14. .Derive (MM1): (GD/ $\infty / \infty)$ queuing model.
15.Derive classic Economic Order Quantity model with one price break.
16. An item sells for $\$ 25$ a unit , but a 10% discount is offered for lots of 150 units or more.

A company uses this item at the rate of 20 units per day. The setup cost for ordering a lot is $\$ 50$ and the holding cost per unit per day is $\$ 30$. Should the company take advantage of the discount?
17. Use dynamic programming method to solve the following LPP:

Minimize $\mathrm{z}=\mathrm{x}_{1}{ }^{2}+2 \mathrm{x}_{2}{ }^{2}+4 \mathrm{x}_{3}$
subject to
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \geq 8$
$x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$.
18. Explain the three methods of simulation.

Section-C

Answer any two questions
19.(a) Explain dual simplex algorithm.
(b) Use duality to solve the following LPP:

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+\mathrm{x}_{2}$
Subject to
$\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10$
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 6$
$\mathrm{x}_{1}-\mathrm{x}_{2} \leq 2$
$\mathrm{x}_{1}-2 \mathrm{x}_{2} \leq 1 \quad, \quad \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0$
$(10+10)$ marks
20.Use Wolfe's method to solve the following QPP:

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}-2 \mathrm{x}_{1}{ }^{2}$
Subject to
$\mathrm{x}_{1}+4 \mathrm{x}_{2} \leq 4$
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 2$
$\mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0$
21.(a) Derive probabilistic economic order quantity model.
(b) Derive (MM/C): $(\mathrm{GD} / \infty / \infty)$ queuing model.
$(10+10)$ marks
22. Solve the following integer linear programming problem using the cutting- plane algorithm:

Maximize $\mathrm{z}=3 \mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}$
Subject to
$-x_{1}+2 x_{2}+x_{3} \leq 4$
$4 x_{2}-3 x_{3} \leq 2$
$\mathrm{x}_{1}-3 \mathrm{x}_{2}+2 \mathrm{x}_{3} \leq 3$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ all are non-negative integers.

