B.Sc.DEGREE EXAMINATION - STATISTICS
 FIFTHSEMESTER-APRIL 2017
 ST 5503- COMPUTATIONAL STATISTICS

Date: 26-04-2017
01:00-04:00

Dept. No.

Max. : 100 Marks

Answer any three questions. Each question carries 34 marks.

1. (a) In a population of size $\mathrm{N}=6$ values of the population characteristic are $1,2,4,6,8$ and 10 .

A sample of size $n=2$ is drawn without replacement. Verify that \bar{y} is an unbiased estimate of \bar{Y} and that $\operatorname{Var}(\bar{y})$ is $\left(\mathrm{S}^{2} / \mathrm{n}\right)$. (N-n)/N.
(b) A population of size 120 is divided into four strata whose sizes are $\mathrm{N}_{1}=50, \mathrm{~N}_{2}=10, \mathrm{~N}_{3}=20$ and $\mathrm{N}_{4}=40$ and variances $\left(\mathrm{S}_{\mathrm{i}}^{2}\right)$ are 3,4,5,6 respectively. How will you draw samples of size 20 according to the two allocations(proportional and optimum)?
(10 marks)
(c) 2020 cultivator's holdings in U.P. are stratified according to size. The number of holdings $\left(\mathrm{N}_{\mathrm{h}}\right)$, mean area under wheat per holding $\left(\bar{Y}_{\mathrm{h}}\right)$ and standard deviation of area under wheat per holding $\left(\mathrm{S}_{\mathrm{h}}\right)$ are given below for each stratum.

Asample of 110 taken to estimate area under wheat

Stratum no.	Holding size (acres)	No. of Holdings (N_{h})	\bar{Y}_{h}	S_{h}
1	$0-40$	395	5.5	8.4
2	$41-80$	464	16.4	13.4
3	$81-120$	393	24.4	15.2
4	$121-160$	335	34.6	19.9
5	$161-200$	171	42.2	24.6
6	200andabove	262	58.0	31.3

holdings is the mean per holding
by
(i) Simple random sampling (ii) stratified random sampling with proportional allocations
(iii) Stratified random sampling with optimum allocations.

Compare the standard errors of the estimates in the three cases.($\mathbf{1 5}$ marks)
2. (a) Find the maximum likelihood estimates for $\theta_{1}=\mu$ and $\theta_{2}=\sigma^{2}$ if a random sample of size 15 from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ yielded the following values: $\begin{array}{llllllll}32.7 & 37.1 & 34.0 & 31.2 & 34.1 & 36.4 & 30.8 & 35.5\end{array}$ $\begin{array}{lllllll}31.7 & 35.4 & 32.8 & 37.9 & 37.0 & 35.7 & 33.9\end{array}$
(b) As a clue to the amount of organic waste in Lake Macatawa, a count was made of the number of bacteria colonies in 100 milliliters of water. The number of colonies, in hundreds, for $\mathrm{n}=30$ samples of water from the east basin yielded the following observations:

96	14	31	11	23	61	23	39	73	94
64	10	10	32	21	10	11	13	26	17
97	60	12	69	57	31	79	61	12	27

Find an approximate 95% confidence interval for the mean number of colonies in 100 milliliters of water in the east basin, μ_{E}.
(8 marks)
(c) A botanist measured the growths of pea stem segments, in millimeters, for $\mathrm{n}=12$ observations of and $m=14$ observations of
X: $0.9 \begin{array}{llllllllll}0.9 & 1.9 & 1.1 & 0.2 & 1.0 & 1.8 & 1.1 & 1.5 & 1.0 & 1.3 \\ 0.6\end{array}$
Y: 1.2 1.0
Test the hypothesis $\mathrm{H}_{0}: \sigma_{\mathrm{X}}^{2}=\sigma^{2} \mathrm{Y}$ against $\mathrm{H}_{1}: \sigma_{\mathrm{X}}^{2} \neq \sigma^{2} \mathrm{Y}$ at $\alpha=0.01$.
(12 marks)
(d) The intelligent quotient of 12 students are as follows: 115125150165133131143160

134145 . Test $\mathrm{H}_{0}: \mu=150$ against $\mathrm{H}_{1}: \mu \neq 150$ at $\alpha=0.05$.
(8 marks)
3. (a) The number of mistakes per page in a book of 265 pages are given below.

$\begin{array}{lllllll}\text { No. of pages(} \mathrm{f}) & : & 159 & 61 & 23 & 13 & 6\end{array}$
Fit a Poisson distribution to the given data and test the goodness of fit at 1% level of significance.
(15 marks)
(b) The random samples from two different populations are given below.
$\begin{array}{llllllllll}\mathrm{X}: 64 & 75 & 68 & 80 & 53 & 66 & 86 & 96 & 60 & 80\end{array}$
$\begin{array}{llllllllll}\mathrm{Y}: 70 & 80 & 60 & 65 & 95 & 45 & 70 & 82 & 59 & 64\end{array}$
Test $H_{0}: \mu_{\mathrm{X}}=\mu_{\mathrm{Y}}$ against $\mathrm{H}_{1}: \mu_{\mathrm{X}} \neq \mu_{\mathrm{Y}}$ at $\alpha=0.01$.
(9 marks)
(c) Let X and Y be the percentages of body fat for women and men, respectively
with distribution functions $\mathrm{F}(\mathrm{x})$ and $\mathrm{G}(\mathrm{y})$.Using runs ,test the hypothesis $\mathrm{H}_{0}: \mathrm{F}(\mathrm{z})=\mathrm{G}(\mathrm{z})$
against $\mathrm{H}_{1}: \mathrm{F}(\mathrm{z})<\mathrm{G}(\mathrm{z})$ at $\alpha=0.01$. Twelve observations of both X and Y that have been ordered
are
$\begin{array}{lllllllllllll}\text { X: } & 16.8 & 16.9 & 18.7 & 19.4 & 21.7 & 22.6 & 22.8 & 23.4 & 24.4 & 26.5 & 28.2 \\ \text { Y: } 9.2 & 9.9 & 11.5 & 12.0 & 13.5 & 15.8 & 16.3 & 16.7 & 18.4 & 21.9 & 22.4\end{array}$
(10 marks)
4. (a) For the following data compute Fisher, Dorbish-Bowley, Marshall-Egeworth and Walsh price index numbers:

Commodity	Base year price	Current year price	Base year quantity	Current year quantity
A	45	55	11	6
B	25	35	9	5
C	35	45	9	7
D	15	25	10	10

Also verify the time and factor reversal tests.
(16 marks)
(b) In the construction of certain cost of living index number, the following group index numbers were found. Calculate the cost of living index number using (i) weighted arithmetic mean (ii) weighted geometric mean.

Group:	A	B		C	D	${ }_{1}^{\text {E }} 190$		
Index number:	352	200		230				
Weight	50	10		10	15	15		marks)
(c) Given below	are two	of indic						
Year	: 1939	1940	1945	1947	1949	1950	1951	1952
Index(old) A	100	120	125	135	150			
Index (new) B			...		100	115	130	140

(i) Splice new series to old series.
(ii) Splice old series to new series.
(d)The annual wages of a worker in rupees along with price index numbers are given below.

Year	$: 1971$	1972	1973	1974	1975
Wages	$: 225$	250	280	288	325

Index number : $100 \quad 120 \quad 135 \quad 145 \quad 155$
Prepare index numbers for real wages of workers.
5.(a) Fit a straight line trend by least squares to the following data and calculate trend values:

Production('000 tons) :85 93
(b) Find out the seasonal indices by the method of moving averages for the following data:

Quarter Year	I	II	III	IV
2002	35	45	40	39
2003	39	57	55	49
2004	45	63	59	52
2005	59	81	63	72
2006	85	97	85	87

