ST 6604 / ST 6607 - OPERATIONS RESEARCH

Date: 22-04-2017
09:00-12:00

Dept. No.

PART-A

Answer ALL the questions:

1. Define objective function.
2. Define non-degenerate basic solution
3. Define pseudo-optimal solution.
4. When the dual simplex method is used?
5. Define balanced transportation problem.
6. Give mathematical formulation of a transportation problem.
7. What is a project?
8. Define activity in a network analysis.
9. Define states of nature.
10. Define saddle point for a game.

PART-B

Answer any five questions:-
11. Explain in detail about the main phases of OR.
12. A company produces 2 types of hats. Each hat A require twice as much labour time as the second hat B. If all are of hat B only, the company can produce a total of 500 hats a day. The market limits daily sales of the hat A and hat B to 150 and 250 hats. The profits on hat A and B are Rs. 8 and Rs. 5 respectively. Solve graphically to get the optimal solution.
13. Describe briefly the Big-Mmethod of solving a LPP with artificial variables.
14. Construct the network for the project whose activities and their precedence given below: A,B,C can start simultaneously $\mathrm{A}<\mathrm{F}, \mathrm{E} ; \mathrm{B}<\mathrm{D}, \mathrm{C}, \mathrm{E}, \mathrm{D}<\mathrm{G}$.
15. Explain in detail about four methods in decision theory with example.
16. Explain the simplex algorithm of solving a Linear programming problem.
17. The assignment cost of assigning any one operator to any one machine is given in the following table.

Operators Machine	I	II	III	IV
A	10	5	13	15
B	3	9	18	3
C	10	7	3	2
D	5	11	9	7

Find the optimum assignment schedule.
18. How a game will be solved when saddle point does not exists?
19. a). Explain the general methods of Solving O.R. models.
b). Use simplex method to

$$
\begin{gathered}
\operatorname{Min} Z=x_{2}-3 x_{3}+2 x_{5} \\
\text { subject to, } \\
3 x_{2}-x_{3}+2 x_{5} \leq 7 \\
-2 x_{2}+4 x_{3} \leq 12 \\
-4 x_{2}+3 x_{3}+8 x_{5} \leq 10 \\
\text { and } x_{2}, x_{3}, x_{5} \geq 0
\end{gathered}
$$

20. a. Use penalty method to solve

$$
\begin{gathered}
\operatorname{Max} Z=2 x_{1}+x_{2}+x_{3} \\
4 x_{1}+6 x_{2}+3 x_{3} \leq 8 \\
3 x_{1}-6 x_{2}-4 x_{3} \leq 1 \\
2 x_{1}+3 x_{2}-5 x_{3} \geq 4 \\
\text { and } x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

b. Explain the disadvantage of Big-Mmethod over Two- phase method.
21. a. Solve the transportation problem with unit transportation costs, demands and supplies as given below.

Destination Source	D1	D2	D3	D4
S1	6	1	9	3
S2	11	5	2	8
S3	10	12	4	7
Demand	85	35	50	55
70				

b. Compute the earliest start, earliest finish latest start and latest finish of each activity of the project given below:

Activity	$1-2$	$1-3$	$2-4$	$2-5$	$3-4$	$4-5$
Duration (in days)	8	4	10	2	5	3

22. a. For the following cost matrix suggest the best decision according to
(i) Maximin Criterion
(ii) Hurwicz criterion with $\alpha=0.2$

States of nature

Decision	N1	N2
D1	30	35
D2	-20	10

Here the negative quantities represent profit.
b. Using graphical method, solve the rectangular game whose payoff matrix for player A is

Player B
Player $\mathrm{A}\left[\begin{array}{lrlrl}2 & -1 & 5 & -2 & 6 \\ -2 & 4 & -3 & 1 & 0\end{array}\right]$

