LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS** SIXTHSEMESTER - APRIL 2017

ST 6604 / ST 6607 - OPERATIONS RESEARCH

Date: 22-04-2017 09:00-12:00

PART-A

(10x2=20)

Max.: 100 Marks

1. Define objective function.

Answer ALL the questions:

- 2. Define non-degenerate basic solution
- 3. Define pseudo-optimal solution.
- 4. When the dual simplex method is used?
- 5. Define balanced transportation problem.
- 6. Give mathematical formulation of a transportation problem.

Dept. No.

- 7. What is a project?
- 8. Define activity in a network analysis.
- 9. Define states of nature.
- 10. Define saddle point for a game.

PART-B

Answer any five questions:-

- 11. Explain in detail about the main phases of OR.
- 12. A company produces 2 types of hats. Each hat A require twice as much labour time as the second hat B. If all are of hat B only, the company can produce a total of 500 hats a day. The market limits daily sales of the hat A and hat B to 150 and 250 hats. The profits on hat A and B are Rs. 8 and Rs.5 respectively. Solve graphically to get the optimal solution.
- 13. Describe briefly the Big-M method of solving a LPP with artificial variables.
- 14. Construct the network for the project whose activities and their precedence given below. A,B,C can start simultaneously $A \prec F$, E; $B \prec D$, C, E, D $\prec G$.
- 15. Explain in detail about four methods in decision theory with example.
- 16. Explain the simplex algorithm of solving a Linear programming problem.
- 17. The assignment cost of assigning any one operator to any one machine is given in the following table.

Operators Machine	I	II		IV
A	10	5	13	15
В	3	9	18	3
С	10	7	3	2
D	5	11	9	7

Find the optimum assignment schedule.

18. How a game will be solved when saddle point does not exists?

1

(5x8=40)

PART-C

Answer any Two questions:

19. a). Explain the general methods of Solving O.R. models.

b). Use simplex method to

$$\begin{array}{l} \text{Min } Z = x_2 - 3x_3 + 2x_5 \\ \text{subject to,} \\ 3x_2 - x_3 + 2x_5 \leq 7 \\ -2x_2 + 4x_3 \leq 12 \\ -4x_2 + 3x_3 + 8x_5 \leq 10 \\ \text{and } x_2, x_3, x_5 \geq 0 \end{array}$$

20. a. Use penalty method to solve

$$Max Z = 2x_1 + x_2 + x_3 4x_1 + 6x_2 + 3x_3 \le 8 3x_1 - 6x_2 - 4x_3 \le 1 2x_1 + 3x_2 - 5x_3 \ge 4 and x_1, x_2, x_3 \ge 0$$

- b. Explain the disadvantage of Big-Mmethod over Two- phase method.
- 21. a. Solve the transportation problem with unit transportation costs, demands and supplies as given below:

Destination	D1	D2	D3	D4	Supply
Source					
S1	6	1	9	3	70
S2	11	5	2	8	55
S3	10	12	4	7	70
Demand	85	35	50	45	

b. Compute the earliest start, earliest finish latest start and latest finish of each activity of the project given below.

Activity	1-2	1-3	2-4	2-5	3-4	4-5
Duration	8	4	10	2	5	3
(in days)						

22. a. For the following cost matrix suggest the best decision according to

- (i) Maximin Criterion
- (ii) Hurwicz criterion with $\alpha = 0.2$

States of nature			
Decision	N1	N2	
D1	30	35	
D2	-20	10	

Here the negative quantities represent profit.

b. Using graphical method, solve the rectangular game whose payoff matrix for player A is

Player B Player A $\begin{bmatrix} 2 & -1 & 5 & -2 & 6 \\ -2 & 4 & -3 & 1 & 0 \end{bmatrix}$

(2x20=40)