LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -**STATISTICS**

THIRD SEMESTER - APRIL 2018

16UST3MC02- ESTIMATING THEORY

Date: 07-05-2018	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00		1

PART A

Answer ALL the questions (10X2=20 marks)

- 1. Define unbiased estimator of a parametric function. Give an example.
- 2. Define Consistent Estimator.
- 3. Define Sufficient Statistic using the 'Information Approach'.
- 4. Define a Complete Family of distributions.
- 5. Describe the Method of Least Squares Estimation.
- 6. State the Least squares Estimator of β_0 in the model $Y = \beta_0 + \beta_1 X + \epsilon$.
- 7. What is the role of prior distribution?
- 8. Explain the Minimax Principle.
- 9. Describe Confidence Intervals.
- 10. State the 95% confidence interval for μ based on a random sample of size n from N(μ , 1).

PART B

Answer any **FIVE** questions

 $(5 \times 8 = 40 \text{ marks})$

- 11. State and Prove Cramer-Rao Inequality.
- 12. Define UMVUE and prove that it is unique.
- 13. Derive the moment estimators of the parameters of Gamma Distribution.
- 14. If X_1 , X_2 , ..., X_n is a random sample from $N(\mu, \sigma^2)$, with μ known, derive a sufficient statistic for σ^2 using Neyman Fisher Factorization Criterion.
- 15. If X_1 , X_2 , ..., X_n is a random sample from Poisson (λ), show that $\sum_{i=1}^{n} X_i$ is a sufficient statistic by the conditional distribution approach.

- 16. Let $X_1, X_2, ..., X_n$ be a random sample from $B(1, \theta)$, where the prior distribution of θ is Beta (α, β) . Obtain the Bayes estimator of θ .
- 17. Obtain $100(1 \alpha)\%$ confidence interval for the variance of a normal distribution whose mean is also unknown.
- 18. Define 'Efficiency' of an estimator. Explain with an example.

PART C

Answer any **TWO** questions

 $(2 \times 20 = 40 \text{ marks})$

- 19. a) Define a consistent estimator. Obtain the same for the parameter 'p' of B(1, p) based on a random sample of size 'n'.
 - b) Show that the family of Poisson distributions $\{P(\lambda), \lambda > 0\}$ is complete. (12 + 8)
- 20. a) State and Prove Rao-Blackwell Theorem.
 - b) Obtain the moment estimators of the parameters of $U(\theta_1, \theta_2)$ (10 + 10)
- 21. a) Derive the MLEs of the parameter θ based on a random sample from U[θ − 1, θ + 1]
 b) If the Cramer-Rao Lower bound is attained by an estimator of θ, show that this estimator is the solution of the likelihood equation ∂ Log L / ∂θ = 0 and is the maximum likelihood estimator of θ
 (8 + 12)
- 22. a) Discuss the Principle of Minimax and define a Minimax Estimator.
 - b) Define prior and posterior distributions with suitable notations. Define Bayes Risk of an estimator and obtain two different expressions for it. (6 + 14)
