LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – **STATISTICS**

SECONDSEMESTER – APRIL 2018

17/16/ ST2814 PST2MC01- ESTIMATION THEORY

 Date: 17-04-2018
 Dept. No.

 Time: 01:00-04:00
 Max. : 100 Marks

SECTION – A

Answer ALL the questions

- 1. If X₁ and X₂ are $B(1,\theta)$ then obtain the unbiased estimator of 2θ .
- 2. State the different approaches to identify UMVUE.
- 3. Define Minimum Variance Bound Estimator.
- 4. State Neyman Fisher Factorization Theorem
- 5. Let X₁ and X₂ be iid $N(\theta,1)$, $\theta \in R$. Is $X_1 + 2X_2$ ancillary statistic?
- 6. Let X_1 , X_2 be iidP(θ), θ >0. Show that X_1+2X_2 is not sufficient for θ .
- 7. Define completeness and bounded completeness.
- 8. What is exponential class of family?
- 9. Suggest an MLEforP[X=0]in the caseofP(θ), θ >0.
- 10. Define CAN estimator.

SECTION – B

 $(5 \times 8 = 40)$

Answer any FIVE questions

11. State and establish Uncorrelatedness approach of UMVUE.

- 12. Give an example for each of the following:
 - (i) U_g is empty (ii) U_g is singleton.
- 13. State and establish Rao-Blackwell theorem.
- 14. Let X₁,X₂,...,X_n be a random sample from $N(0,\theta^2)$. Obtain the Cramer Rao lower bound for estimating θ^2 .
- 15. Show that the family of $B(n,\theta)$, $0 < \theta < 1$ is complete.
- 16. Let X₁,X₂,...,X_n be a random sample of size n from $P(\theta)$, $\theta > 0$. Obtain MVBE of θ and suggest MVBE of $a\theta + b$, where a and b are constants such that $a \neq 0$.
- 17. State and establish Basu's theorem.
- 18. Let $X \sim N(0,\theta), \theta > 0$. Assume that the prior distribution of θ is $h(\theta) = \theta e^{-\theta}, \theta > 0$. Find the Baye's estimator of θ if the loss function is absolute error.

SECTION – C

(

- **19.** (a) If UMVUE exists for the parametric function $\psi(\theta)$ then show that it must be essentially unique.
 - (b) Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\theta, 1)$, $\theta \in R$.
 - i. Obtain the information contained in the sample.
 - ii. Show that \overline{X} is MVBE for estimating θ .

Answer any TWO questions

iii. Deduce that \overline{X} is UMVUE for estimating θ . (10+10)

20. (a) Give an example of an estimator which is consistent but not CAN.

(b) Let $X_1, X_2, ..., X_n$ be a random sample of size n from a two parameter exponential

distribution $E(\xi, \tau)$, $\xi \in R$, $\tau > 0$. Find MLE of ξ and τ . (10+10)

21. (a) State and Prove Cramer-Rao inequality by stating its regularity conditions.

(b) MLE is not consistent – Support the statement with an example. (10+10)

- 22. (a) "Blind use of Jackknifed method" Illustrate with an example.
 - (b) Write a short note on Bootstrap method. (10+10)

\$\$\$\$\$\$\$\$

 $(2x\ 20 = 40)$