LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -STATISTICS

THIRD SEMESTER - APRIL 2018
ST 3506- MATRIX AND LINEAR ALGEBRA

Date: 07-05-2018
Time: 01:00-04:00

Dept. No. \square Max. : 100 Marks

Answer ALL the Questions
($\mathbf{1 0} \times 2=20$ marks)

1) Define skew symmetric matrix with an example.
2) Define minor of an element in a matrix. Find the minor of a_{21} in the following matrix
$\left[\begin{array}{lll}2 & 5 & 8 \\ 1 & 3 & 2 \\ 0 & 4 & 6\end{array}\right]$
3) Mention any two properties of the determinant of a matrix.
4) Find the value $\left|\begin{array}{lcc}1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{array}\right|$
5) Establish the uniqueness of the inverse of a non-singular matrix.
6) Find the rank of $\left[\begin{array}{rrr}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$.
7) Define Linear Independence of vectors.
8) Define a linear transformation.
9) Define the characteristic equation of amtrix.
10) Find the characteristic roots of $\left[\begin{array}{ll}5 & 1 \\ 2 & 4\end{array}\right]$.
Part - B

Answer any FIVE Questions ($5 \times 8=40$ marks)
11) If matrices A and B commute in multiplication, show that
$(A+B)^{n}=\sum_{i=1}^{n}{ }^{n} C_{i} A^{i} B^{n-i}$ for every positive integer ' n '.
12) Show that every square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew-symmetric matrix.
13) Find the inverse of the following matrix by step-by-step reduction of $[\mathrm{A} \vdots \mathrm{I}]$:
$\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
14) (a) Show that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.

(b) Show that $\left|\begin{array}{ccc}x+2 & 3 & 4 \\ 2 & x+3 & 4 \\ 2 & 3 & x+4\end{array}\right|=x^{2}(x+9)$

15) State and prove a necessary and sufficient condition for a square matrix to possess an inverse.
16) If the coefficient matrix A is non-singular, show that the system $A x=0$ of n homogeneous linear equations in n unknowns has only a trivial solution.
17) In a vector space of dimension ' n ', show that any vector x is a linear combination of linearly independent vectors $x_{1}, x_{2}, \ldots, x_{\mathrm{k}}$ if and only if $x, x_{1}, x_{2}, \ldots, x_{\mathrm{k}}$ are linearly dependent.
18) Show that the product of two matrices is associated to composition of linear transformations.
Part - C

Answer any TWO Questions

19) a) Establish that $\operatorname{Tr}(\mathrm{AB})=\operatorname{Tr}(\mathrm{BA})$ with the following matrices:

$$
A=\left[\begin{array}{rrr}
1 & -2 & 3 \\
-4 & 2 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
2 & 1
\end{array}\right]
$$

b) Applying the properties of a determinant, find the value of the following determinant:
$\left|\begin{array}{rrrrr}2 & 1 & -2 & -1 & 3 \\ 1 & 2 & -1 & 4 & 1 \\ -2 & 0 & 0 & 0 & 0 \\ 2 & 2 & 0 & 2 & 3 \\ 1 & 1 & 0 & 3 & 1\end{array}\right|(\mathbf{1 0}+\mathbf{1 0})$
20) a) Obtain the expression for the inverse of a matrix in partitioned form.
b) Find inverse of the following matrix by partitioning:
$\left[\begin{array}{rrr}0 & 1 & 1 \\ 2 & 3 & -1 \\ -1 & 2 & 1\end{array}\right](\mathbf{1 0}+\mathbf{1 0})$
21) a) State and prove Cayley-Hamilton Theorem.
b) Show that the following matrix satisfies Cayley-Hamilton Theorem:
$\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right](\mathbf{1 0}+\mathbf{1 0})$
22) a) Show that the characteristic roots of two similar matrices are the same.
b) Using Cramer's rule to solve the following system of equations:

$$
\begin{align*}
& 2 x_{1}+3 x_{2}+x_{3}-x_{4}=1, x_{1}+x_{2}-x_{4}=-1 \\
& 3 x_{2}+x_{3}+x_{4}=3, x_{1}+x_{3}-x_{4}=0 \tag{5+15}
\end{align*}
$$

