LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – MATHS., ADV.ZOO., PLANT BIO., & PHYSICS

FOURTHSEMESTER – APRIL 2018

ST 4209/ST 4206/ST 4201- MATHEMATICAL STATISTICS

 Date: 02-05-2018
 Dept. No.
 Max. : 100 Marks

 Time: 09:00-12:00
 Max. : 100 Marks
 Max. : 100 Marks

SECTION - A

(10X 2 = 20 Marks)

1. Define: Statistics.

Answer ALL questions:

- 2. What is conditional distribution?
- 3. Write the additive property of Binomial distribution.
- 4. How will you derive the marginal density function from joint density function?
- 5. Write the MGF of Poisson distribution.
- 6. Derive the mean of Exponential distribution.
- 7. What is the nth order statistic?
- 8. Define: t statistic.
- 9. Define: unbiased estimator.
- 10. Define: Type II error.

SECTION - B

Answer any FIVE questions:

(5 X 8 = 40 Marks)

- 11. State and prove the addition law of probability.
- 12. If the joint pdf of (X,Y) is given by $f(x, y) = e^{-(x+y)}$, $x \ge 0$, $y \ge 0$. Find E (XY).
- 13. State and prove Chebyshev's inequality.
- 14. Calculate the correlation co efficient for the following data.

Х	43	21	25	42	57	59
Y	99	65	79	75	87	81

- 15. Prove that a linear combination of random variables $X_1, X_2, ..., X_n$ follow $N(\mu_i, \sigma_i^2)$ is also Normal.
- 16. Derive the Mean and variance of Discrete Uniform distribution.
- 17. A random sample(X₁, X₂, X₃, X₄, X₅) of size 5 is drawn from normal population with unknown mean μ . Consider the following estimators.

i)
$$t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$
, ii) $t_2 = \frac{X_1 + X_2}{2} + X_3$ iii) $t_3 = \frac{2X_1 + X_2 + \lambda X_3}{3}$

Find λ . Are t₁ and t₂ unbiased? State giving reasons, the estimator which is best among t₁, t₂ and t₃? 18. Define the following:

(i) Null Hypothesis (ii) Alternate Hypothesis (iii) Critical region (iv) Most Powerful critical region

SECTION - C

Answer any TWO questions

(2 X 20 = 40 Marks)

19. Two random variables X and Y have the joint pdf $f(x, y) = \begin{cases} \frac{xy}{96}, & 0 < x < 4, 1 < y < 5 \\ 0 & otherwise \end{cases}$. Find (i) E(X)

(ii) E(Y) (iii) Var(X) (iv) Var(Y) (v) E(XY) (vi) E(2X+3Y) (vii) COV(X,Y).

- 20. (i) Derive the moment generating function of Normal distribution.(10 Marks)(ii) State and prove the lack of memory property of exponential distribution.(10 Marks)
- 21. Derive the moment generating function of chi square distribution and hence derive the mean and variance.
- 22. State and prove Neyman Pearson Lemma.

\$\$\$\$\$\$\$\$