LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION -**STATISTICS**

SIXTH SEMESTER - APRIL 2018

ST 6608- STATISTICAL QUALITY CONTROL

Date: 21-04-2018	Dept. No.	Max. : 100 Marks

Time: 09:00-12:00

SECTION - A

Answer ALL the questions:

(10x2=20 Marks)

- 1. What is meant by total quality management?
- 2. Define quality of design and conformance.
- 3. When do you use Histogram?
- 4. Write a note on qq plot.
- 5. Specify the purpose of the p chart.
- 6. Write down the control limits of c chart.
- 7. Define CUSUM chart.
- 8. Define process capability ratio.
- 9. Define double sampling plan.
- 10. Define consumer's and producer's risk.

SECTION - B

Answer any FIVE questions:

(5x8=40 Marks)

- 11. Explain the management aspects of quality improvement.
- 12. Write any eight Deming's points for implementing quality and productivity improvement.
- 13. Write short notes on stem and leaf plot.
- 14. Explain the need for management of product quality.
- 15. Explain the interpretation of X bar and R chart.
- 16. Explain the single sampling plan for attributes.
- 17. Explain in detail about acceptance sampling plan.
- 18. Describe the procedure for construction of X bar and R chart.

SECTION - C

Answer any TWO questions:

(2x20=40 Marks)

- 19. a. Explain the construction of u chart with variable sample size.
 - b. What are the benefits of statistical quality control?
- 20. a. Discuss about Box Plot technique with an example.
 - b. Explain in detail about the procedure of c chart and write down the applications of c chart
- 21. a. Distinguish between shewhart control charts and cusum control.
 - b. Write down the merits and demerits of acceptance sampling.
- 22. a. Explain the sequential sampling plan.
 - b. Explain the construction of p chart using
 - (i) Variable width control limits
 - (ii) control limits based on an average sample size.
