1

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION -**STATISTICS**

FIFTH SEMESTER - APRIL 2019

16UST5MC01- APPLIED STOCHASTIC PROCESSES

Date: 15-04-2019 Dept. No. Max.: 100 Marks Time: 09:00-12:00 PART A Answer ALL the questions: (10X2=20)

- 1. Define stochastic process.
- 2. Define state space and time of a stochastic process.
- 3. Define Markov Chain
- 4. Define transient and persistent states.
- 5. Define periodicity.
- 6. Define stationary distribution.
- 7. Define point process.
- 8. Mention the postulates of Poisson process.
- 9. Define branching process
- 10. What is meant by "ultimate extinction" of a branching process?

PART B

Answer any FIVE questions:

- 11. Explain the classification of stochastic processes based on state and time with suitable examples.
- 12. Explain stochastic processes with independent increments.
- 13. Prove that the two-step T.P.M is the square of the one-step T.P.M for a Markov Chain.
- 14. Explain random walk between two barriers.
- 15. Explain the classifications of states in a Markov Chain.
- 16. Classify the states of a Markov Chain with the following one-step TPM:
 - 1 2 3 4

1	1/3	2/3	0	0
2	1	0	0	0
3	1⁄2	0	1⁄2	0
4	0	0	1⁄2	1⁄2

- 17. Show that the interval between two successive occurrences of a Poisson process follows negative exponential distribution.
- 18. Explain branching process with an example

(5 X 8=40)

PART C

Answer any TWO questions:

- 19. Explain the specification and classifications of stochastic processes with suitableexamples.
- 20. a. If state j is persistent, then for every state k that can be reached from state j, prove that $F_{kj}=1$.
 - b. State and prove ergodic theorem.
- 21. Explain in detail about pure birth process and Yule-Furry process.
- 22. For a branching process $\{X_n\},$ if $\phi_n(s)$ is the generating function of X_n and $\phi(s)$ is the generating

function of X₁, show that $\varphi_n(s) = \varphi_{n-1}[\varphi(s)] = \varphi[\varphi_{n-1}(s)]$.

