SECTION - A

Answer ALL the questions

($\mathbf{1 0} \mathbf{x} 2=20$ marks)

1. When do you say that a bounded function is Riemann integrable on $[\mathrm{a}, \mathrm{b}]$?
2. Given that X has the probability mass function $\mathrm{p}(\mathrm{x})=\frac{1}{8} 3_{C x}$ for $\mathrm{x}=0,1,2,3$. Find the M.G.F. of X.
3. Prove that $\beta(m, n)=\beta(n, m)$.
4. Prove that $\mathrm{L}(\operatorname{Cos} \mathrm{at})=\frac{S}{s^{2+a^{2}}}$.
5. Evaluate $\int_{0}^{b} \int_{O}^{a} x y(x-y) d x d y$.
6. Given $\mathrm{f}(\mathrm{x}, \mathrm{y})=\begin{gathered}x e^{-x(1+y)}, x \geq 0, y \geq 0 \\ 0, \quad \text { other wise }\end{gathered}$. Find E (X Y).
7. Solve the equation $\left(D^{2}+1\right) y=0$.
8. Find the order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}-4 \sqrt{\frac{d y}{d x}}=5$.
9. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Find the characteristic equation of A .
10. Show that the system of equations $3 x-4 y=2 ; 5 x+2 y=12 ;-x+3 y=1$ are consistent.

SECTION - B

Answer any FIVE questions.
11. Let f be a bounded function on the closed, bounded interval $[\mathrm{a}, \mathrm{b}]$.

Show that $f \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$ if and only if for each $\in>0$ there exists a subdivision σ of $[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{U}[\mathrm{f} ; \sigma]<\mathrm{L}[\mathrm{f} ; \sigma]+\in \ldots .$.
12. A continuous random variable X has a p.d.f. given by $\mathrm{f}(\mathrm{x})=\begin{aligned} & k x e^{-\lambda x}, x>0, \lambda>0 \\ & 0, \quad \text { other wise } .\end{aligned}$ Determine the constant k and find the mean and variance of X , when λ is a known constant.
13. Prove that the improper integral $\int_{1}^{\infty} \frac{d x}{n}$ diverges.
14. Find $L\left(\frac{1-e^{t}}{t}\right)$.
15. Given the joint density function of X and Y as $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x}{2} e^{-y}, 0<x<2, y>0$ Find the distribution of $\mathrm{X}+\mathrm{Y}$.
16. Solve $\left(D^{2}-2 D+3\right) y=x^{3}$.
17. Using Laplace transform, solve $\frac{d 2 y}{d t^{2}}+\frac{6 d y}{d t}+5 y=e^{-2 t}$ given that $\mathrm{y}=0, \frac{d y}{d t}=1$ when $\mathrm{t}=0$.
18. Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$.

SECTION - C

Answer any TWO questions

19. a) State and prove the first fundamental therorem of integral calculus.
b) The probability density function of the random variable X is $f(x)=\frac{1}{2 \theta} \exp \left(-\frac{(x-\theta)}{\theta}\right),-\infty<x<\infty$. Find M.G.F. of X and alsdo find $\mathrm{E}(\mathrm{X})$ and var (X).

$$
(10+10=20)
$$

20. a) Prove that the improper integral $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$ is convergent.
b) Prove that (i) $\left(n+\frac{1}{2}\right)=\frac{1.3 .5 . . .(2 n-1)}{2^{n}} \sqrt{\pi}$ and (ii) $(n+1)=n(n)$.
21. a) Solve the equation $\frac{d 2 y}{d x^{2}}-y=\left(1+x^{2}\right) e^{x}+x \sin x$.
b) The joing p.d.f. of the random variables X and Y is given by $f(x, y)=$
$e^{-(x+y)}, x>0 y>0$ 0 , other wise . Find the $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$.
22. a) Show that the following system of equations is consistent and hence solve them.
$x-3 y-8 Z==10 ; \quad 3 x+y-4 Z=0 ; \quad 2 x+5 y+6 Z=13$.
b) State and prove Cayley - Hamilton theorem.
