LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – NOVEMBER 2016

16PST1MC01 / ST 1820 - ADVANCED DISTRIBUTION THEORY

 Date: 02-11-2016
 Dept. No.
 Max. : 100 Marks

 Time: 01:00-04:00
 Max. : 100 Marks

Part –A

Answer ALL the questions:

- 1. State the properties of a distribution function.
- 2. Write the pdf of a Binomial truncated at 0.
- 3. Write the marginal distribution of X_1 and X_2 in the case of Bivariate Poisson distribution.
- 4. Write the necessary and sufficient condition for the independence of two random variables X_1 and X_2 in terms of pgf.
- 5. Write the conditional distribution of X_1 given $X_2 = x_2$ for a Trinomial distribution.
- 6. Define a power series distribution.
- 7. What is the $E[X_1|X_2 = x_2]$ for a Bivariate normal distribution.
- 8. Let X denote the number of throws when a die is thrown till the face six is obtained. Find E(X).
- 9. Write the pdf of the rth Order Statistics.
- 10. Verify whether the Quadratic form is positive definite

 $Q(x_1, x_2) = x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 3x_1x_3 + x_2x_3.$

Part-B

Answer any Five questions:

11. Given $F(x) = \begin{cases} 0, & x < -1 \\ \frac{x+2}{4}, & -1 < x \le 1, \\ 1, & 1 \le x \end{cases}$, decompose the distribution into discrete and continuous. Find

the mean and variance.

- 12. Let X_1 and X_2 be i.i.d geometric random variables. Obtain the pdf of X_1 given $X_1 + X_2 = n$
- 13. Obtain the recurrence relation satisfied by the power series distribution.

14. Let $X_1, X_2, ..., X_n$ be a random sample from f(x) = 1 0 < x < 1. Obtain the pdf of range.

- 15. State and prove the additive property of Bivariate Poisson distribution.
- 16. Obtain the relationship satisfied by the mean, median and mode of Lognormal distribution.
- 17. Obtain the MGF of Inverse Gaussian distribution.
- 18. Let X_1 have Gamma distribution G(α , p_1) and another independent variable X_2 have Gamma

distribution G(α , p_2). Obtain the pdf of $\frac{X_1}{X_1 + X_2}$.

(10 X 2 = 20)

(5 X 8 = 40)

Answer any TWO Questions:

Part-C

- 19. a) State and prove Skitovitch theorem.
 - b) Let X_1, X_2, X_3 be independent normal random variables such that $E(X_1) = 1, E(X_2) = 3$, $E(X_3) = 2$ and $var(X_1) = 1, var(X_2) = 2, var(X_3) = 3$ Examine the independence of (i) $2X_1 + X_3$ and $X_1 - X_2$, (ii) $X_1 + X_2 - 2X_3$ and $X_1 - X_2$.
 - c) Examine the independence of \overline{X} and S^2 using Skitovitch theorem for a random sample from $N(\mu, \sigma^2)$ (10+5+5)
- 20. a) Let $X_1, X_2, ..., X_n$ be a random sample from $f(x) = \alpha e^{-\alpha x}$. Let $D_k = (n-k+1)[X_{(k)} - X_{(k-1)}]$ k = 1, 2, ..., n then show that D_k 's are i.i.d with pdf f. Hence show that $X_{(1)}$ and $\sum_{k=2}^n [X_{(k)} - X_{(1)}]$ are independent.
 - b) Let X be a non-negative absolutely continuous random variable then show that X satisfies lack of memory iff X is Exponential. (10+10)
- 21. a) Let (X_1, X_2) has Bivariate Binomial with parameters n, p_1, p_2 and p_{12} . Show that X_1 given $X_2 = x_2$ is equal in distribution to $U_1 + V_1$ where U_1 and V_1 are independent. Hence Obtain the Correlation Coefficient between X_1 and X_2 .
 - b) Show that for a Bivariate Normal distribution X_1 and X_2 are independent iff $\rho = 0$ (14+6)
- 22. a) Derive the MGF of non-central chi-square distribution
 - b) Let X have Poisson distribution with parameter λ and λ itself is a random variable having Gamma distribution $G(\alpha, v)$. Obtain the marginal distribution of X. (12+8)
