LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2016
16PST1MCO1 / ST 1820 - ADVANCED DISTRIBUTION THEORY

Date: 02-11-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Part -A

Answer ALL the questions:
($10 \times 2=20)$

1. State the properties of a distribution function.
2. Write the pdf of a Binomial truncated at 0 .
3. Write the marginal distribution of X_{1} and X_{2} in the case of Bivariate Poisson distribution.
4. Write the necessary and sufficient condition for the independence of two random variables X_{1} and X_{2} in terms of pgf.
5. Write the conditional distribution of X_{1} given $X_{2}=x_{2}$ for a Trinomial distribution.
6. Define a power series distribution.
7. What is the $\mathrm{E}\left[X_{1} \mid X_{2}=x_{2}\right]$ for a Bivariate normal distribution.
8. Let X denote the number of throws when a die is thrown till the face six is obtained

Find $\mathrm{E}(\mathrm{X})$.
9. Write the pdf of the $\mathrm{r}^{\text {th }}$ Order Statistics.
10. Verify whether the Quadratic form is positive definite

$$
\mathrm{Q}\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}+3 x_{1} x_{3}+x_{2} x_{3} .
$$

Part-B

Answer any Five questions:
($5 \times 8=40$)
11. Given $\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}0, & x<-1 \\ \frac{x+2}{4}, & -1 \leq x \leq 1, \\ 1, & 1 \leq x\end{array} \quad\right.$ decompose the distribution into discrete and continuous. Find the mean and variance.
12. Let X_{1} and X_{2} be i.i.d geometric random variables. Obtain the pdf of X_{1} given $X_{1}+X_{2}=n$
13. Obtain the recurrence relation satisfied by the power series distribution.
14. Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $f(x)=1 \quad 0<x<1$. Obtain the pdf of range
15. State and prove the additive property of Bivariate Poisson distribution.
16. Obtain the relationship satisfied by the mean, median and mode of Lognormal distribution.
17. Obtain the MGF of Inverse Gaussian distribution.
18. Let X_{1} have Gamma distribution $\mathrm{G}\left(\alpha, p_{1}\right)$ and another independent variable X_{2} have Gamma distribution $\mathrm{G}\left(\alpha, p_{2}\right)$.Obtain the pdf of $\frac{X_{1}}{X_{1}+X_{2}}$.

Part-C

Answer any TWO Questions:
19. a) State and prove Skitovitch theorem.
b) Let X_{1}, X_{2}, X_{3} be independent normal random variables such that
$E\left(X_{1}\right)=1, E\left(X_{2}\right)=3, E\left(X_{3}\right)=2$ and $\operatorname{var}\left(X_{1}\right)=1, \operatorname{var}\left(X_{2}\right)=2, \operatorname{var}\left(X_{3}\right)=3$
Examine the independence of (i) $2 X_{1}+X_{3}$ and $X_{1}-X_{2}$, (ii) $X_{1}+X_{2}-2 X_{3}$ and $X_{1}-X_{2}$.
c) Examine the independence of \bar{X} and S^{2} using Skitovitch theorem for a random sample from $N\left(\mu, \sigma^{2}\right)$
20. a) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $f(x)=\alpha e^{-\alpha x}$.

Let $D_{k}=(n-k+1)\left\lfloor X_{(k)}-X_{(k-1)}\right\rfloor k=1,2, \ldots . n$ then show that $D_{k}{ }^{\prime} s \quad$ are i.i.d with pdf f. Hence show that $X_{(1)}$ and $\sum_{k=2}^{n}\left[X_{(k)}-X_{(1)}\right]$ are independent.
b) Let X be a non-negative absolutely continuous random variable then show that X satisfies lack of memory iff X is Exponential.
21. a) Let $\left(X_{1}, X_{2}\right)$ has Bivariate Binomial with parameters n, p_{1}, p_{2} and p_{12}. Show that X_{1} given $X_{2}=x_{2}$ is equal in distribution to $U_{1}+V_{1}$ where U_{1} and V_{1} are independent . Hence Obtain the Correlation Coefficient between X_{1} and X_{2}.
b) Show that for a Bivariate Normal distribution X_{1} and X_{2} are independent iff $\rho=0$
22. a) Derive the MGF of non-central chi-square distribution
b) Let X have Poisson distribution with parameter λ and λ itself is a random variable having Gamma distribution $G(\alpha, v)$. Obtain the marginal distribution of X.

