LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - NOVEMBER 2016
M 202 - GENERAL MATHEMATICS - II

Date: 02-11-2016
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

Answer any SIX questions

1. (a) Find the sum to infinity of the series $1+\frac{2}{6}+\frac{2 \cdot 5}{6 \cdot 12}+\frac{2 \cdot 5 \cdot 8}{6 \cdot 12 \cdot 18}+\cdots \infty$.
(b) Prove that $\frac{e^{2}-1}{e^{2}+1}=\frac{\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\cdots}{1+\frac{1}{2!}+\frac{1}{4!}+\cdots}$.
(c) Prove that $\log \left(\frac{n+1}{n}\right)=2\left[\frac{1}{2 n+1}+\frac{1}{3(2 n+1)^{3}}+\frac{1}{5(2 n+1)^{5}}+\cdots\right]$.
2. (a) Verify Cayley Hamilton theorem for the matrix $A=\left(\begin{array}{rrr}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$.
(b) Find the rank of the matrix $B=\left(\begin{array}{lll}1 & 2 & 5 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right)$.
3. (a) Solve $p^{2}-2 p y=3 y^{2}$ where $p=\frac{d y}{d x}$.
(b) Show that $\left(5 x^{4}+3 x^{2} y^{2}=2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0$ is an exact equation and hence solve it.
4. (a) Solve $y=(x-a) p-p^{2}$.
(b) Solve $\left(D^{2}-4 D+3\right) y=e^{2 x}+\cos 2 x$.
5. (a) Find the equation of the plane passing through the points $(2,5,-3),(-2,-3,5)$ and $(5,3,-3)$.
(b) Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2} ; \frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar. Find also their point of intersection and the plane through them.
6. (a) Find the shortest distance between the lines $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} ; \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.
(b) Find the equation of the sphere through the four points $(2,3,1),(5,-1,2),(4,3,-1)$ and $(2,5,3)$.
7. (a) Show that the vector $\vec{F}=3 y^{4} z^{2} \vec{\imath}+4 x^{3} z^{2} \vec{\jmath}+3 x^{2} y^{2} \vec{k}$ isisolenoidal.
(b) Verify the divergence theorem for $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{j}+y z \vec{i}$ over the cube bounded by $x=0, x=$ $1, y=0, y=1, z=0$ and $z=1$.
8. (a) Form the partial differential equation by eliminating the arbitrary constants in $z=(x-a)^{2}+$ $(y-b)^{2}+1$.
(b) Find the complete solution and singular integral of $z=p x+q y+p^{2} q^{2}$.
(c) Solve $z(x-y)=x^{2} p-y^{2} q$.
(5+5+7)
9. (a) Find the Laplace transform of (i) $\sinh 6 t+3 e^{-5 t}+\cos 5 t$ (ii) $(t+1)^{2}$
(b) Solve the equation $y^{\prime \prime}+4 y^{\prime}-5 y=5$ given that $y(0)=0, y^{\prime}(0)=2$ using Laplace transform
10. (a) Evaluate (i) $\int_{0}^{1} x^{7}(1-x)^{8} d x$ (ii) $\int_{0}^{\frac{\pi}{2}} \sin ^{7} \theta \cos ^{5} \theta d \theta$.
(b) Find the Fourier series of the function $f(x)=\left\{\begin{array}{c}-1,-\pi \leq x<0 \\ 1,0 \leq x \leq \pi\end{array}\right\}$.
