LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER – NOVEMBER 2016

ST 2815 - TESTING STATISTICAL HYPOTHESIS

	5-11-2016 I 1:00-04:00	Dept. No.	Max. : 100 Marks
SECTIO	N – A :	ANSWER ALL THE QUESTIONS	(10 X 2 = 20)
1 2 3 4 5 6 7 8 9 10	Define power function of a test. Define uniformly most powerful test. State Generalized Neyman-Pearson Theorem Show that an UMP test is unbiased Define one parameter exponential family. Define -similar test Mention any two properties of multi parameter exponential family. Give an example of an invariant decision problem Define maximal invariant? Briefly explain the principles of LRT		
SECTION – B: ANSWER ANY FIVE THE QUESTION			
11	Let X $(B(1, \theta)$. Let H: $\theta = 0.1, 0.2$ again t K: $\theta = 0.3, 0.4$. Let the $(x_1, x_2) = \begin{cases} 0.1 & \text{if } x_1 + x_2 = 0 \\ 0 & \text{if } x_1 + x_2 = 1 \\ 0 & \text{if } x_1 + x_2 = 2 \end{cases}$ Find the size and Power of the given test function.		
12	$\begin{array}{ccc} X & 1 \\ f_0(x) & 0.01 \\ f_1(x) & 0.05 \\ \end{array}$ Suppose = 0.03, find the	e with probability mass function und 2 3 4 5 0.01 0.01 0.01 0.0 0.04 0.03 0.02 0.0 ne test function by using Neyman-Pe Il error and Power of the test.	6 01 0.95 01 0.85
13	Let X_{rotab} . X_{rotab} a random sample from U(0,). Derive the UMP level test for testing H: against K: > a Also determine the cutoff point.		
14	Let $X^{12} \stackrel{\text{\tiny Cl}}{\leftarrow} X^{12} \stackrel{\text{\tiny Cl}}{\rightarrow}$ a random sample from a Cauchy distribution with parameter		
15	(1,), start that this family does not have MLR property. Let X stort. X is a random simple from p(). Show that it has Monotone Likelihood Ratio property in		
16	Let X have the distribution P and T be a sufficient statistic for .Show that a necessary and sufficient condition for all similar tests have Neyman structure is		
that the family ^T of distributions of T is boundedly complete		•	
17	Let $X_{\mu\nu}^{herm}$ $X_{\mu\nu}^{P}$ a random sample from N(μ , ²), where ² is known. Derive UMPT of level for testing H: μ μ_0 versus K $\mu > \mu_0$		
18	Obtain the Likelihood ratio Test for equality of means of 'k' Normal populations with a common variance.		

SECTION – C:

ANSWER ANY TWO QUESTIONS

 $(2X\ 20=40)$

(20)

- State and prove the necessary and sufficient condition of Neyman Pearsonfundamental Lemma.
- 20 a) Two independently identically distributes random observations say X and Y are made on random variables whose distribution under the hypothesis H and K are given below.
 - Values of X 0 1 2 3 4 P[X=x/H]0.25 0.25 0.25 0.25 0.00 (10) P[X=x/K]0.1 0.2 0.3 0.3 0.1

Consider the test function $(x, y) = \begin{cases} 1 & \text{if } x + y > 5 \\ 0.3 & \text{if } x + y = 5 \\ 0 & \text{if } x + y < 5 \end{cases}$

Find the size and power of the test function.

b) Let
$$X_{1,3,2,...}^{superative}$$
 a rando im sample of size n is om
 $f(x,\theta) = e^{-(x-\theta)}; \ \theta < x <$
(10)

Does $\{f_{\theta}(x)\}\$ belong to the exponential family? Does $\{f_{\theta}(x)\}\$ have MLR?

a) Let X^{a,G}_μ, X^{a,B}_{mb} e a random sample from P() and Y^{B,D,ave}_μ, Y^{B,C}_n e a random sample from P(μ). Derive UMPU level test for testing the hypothesis (10)
H: μ against K: > μ.
b) Define multi Parameter exponential family. Also mention its objectives and (10)

properties.

22 et $X_{\mu\nu}^{perfer}$... $X_{\mu\nu}^{s}$ a randor sample from N(μ , and let Let $Y_{\mu\nu}^{\prime}$... $Y_{\mu\nu}^{s}$ a random sample from N(π^{2}). Derive an unconditional UMPUT of level for (20)

testing H: $\frac{\sigma_2^2}{\sigma_1^2} \le 0$ versus K $\frac{\sigma_2^2}{\sigma_1^2} > 0$
