LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2016
ST 3506 - MATRIX AND LINEAR ALGEBRA

Date: 04-11-2016
Time: 09:00-12:00

Dept. No. \square

PART - A

Answer ALL the questions.

1. Define a matrix and give an example?
2. If $A=\left[\begin{array}{cc}i & 1 \\ 1 & -1\end{array}\right]$ then find A^{2}.
3. If $\mathrm{P}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then find inverse of P .
4. Prove that if $\mathrm{AB}=\mathrm{AC}$, then $\mathrm{B}=\mathrm{C}$, where A is nonsingular.
5. Define vector space.
6. What is meant by linear dependence of vectors?
7. Define image of a transformation.
8. When a transformation is said to be onto?
9. Find the characteristic root of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$.
10. Define orthogonal matrix.

PART - B

Answer any FIVE questions.
11. If $\mathrm{A}=\left[\begin{array}{cc}1 & 1-i 4 \\ 1+i 4 & 2\end{array}\right]$ then show that ' A ' is hermitian.
12. Prove that $(A B)^{T}=B^{T} A^{T}$.
13. Examine the linear independence of vectors $[1,2,-3],[1,-3,2],[2,-1,5]$.
14. Obtain that in a vector space V_{n}, a vector is a linear combination of vectors iff they are independent.
15. Check the consistency of the following equations:

$$
5 x+3 y+7 y=4,3 x+26 y+2 z=9 \text { and } 7 x+2 y+10 z=5 .
$$

16. Explain the properties of linear transformation.
17. Show that characteristic roots of A and A^{T} are identical.
18. State the properties of determinants.

PART - C

Answer any TWO questions.
19. Show that determinant of the Matrix

$$
\mathrm{A}=\left[\begin{array}{llll}
4 & 5 & 6 & x \\
5 & 6 & 7 & y \\
6 & 7 & 8 & z \\
x & y & z & 0
\end{array}\right]=(x-2 y+z)^{2}
$$

20. Find the rank of the matrix $\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$.
21. a. Define basis and dimension of a subspace.
b. Show the vectors $X_{1}=(1,2,3), X_{2}=(2,-2,0)$ form a linearly independent set.
c. Prove that rank of the sum of two matrices cannot exceed the sum of their ranks.

$$
(6+7+7)
$$

22. Find the characteristic roots of the matrix $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$ and verify Cayley-Hamilton for this matrix. Find the inverse of the matrix A using the characteristic equation. Also obtain the characteristic vectors.
\$\$\$\$\$\$
