LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2016

ST 3815 - MULTIVARIATE ANALYSIS

Date: 01-11-2016
Time: 09:00-12:00
\square Max. : 100 Marks

SECTION - A

Answer ALL the questions

1. Let X, Y and Z have trivariate normal distribution with null mean vector and covariance matrix $\left[\begin{array}{ccc}2 & 5 & 0 \\ 5 & 2 & -1 \\ 0 & -1 & 1\end{array}\right]$. Find the distribution of $X+Y$.
2. Given the 3 component vector $X=\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right] \sim N_{3}\left[\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right),\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 4 & 1 \\ -1 & 1 & 6\end{array}\right)\right]$, find the mean of the conditional distribution of X_{1} given $X_{2}=0$ and $X_{3}=0$.
3. Test $\mu=\left(\begin{array}{ll}0 & 0\end{array}\right)^{\prime}$ at level 0.05 , in a bivariate normal population with $\sigma_{11}=\sigma_{22}=5$ and $\sigma_{12}=-2$, using the sample mean vector $\bar{x}=(7-3)$ ' based on sample size 10.
4. Explain use of the partial and multiple correlation coefficients.
5. Describe a) Common factor b) Communality.
6. What is the difference between classification problem into two classes and testing problem?
7. Distinguish between principal component analysis and factor analysis.
8. Let Y_{i} be the $\mathrm{i}^{\text {th }}$ principal component of the system involving variables $X_{1}, X_{2}, \ldots, X_{p}$ and e_{i} be the eigen vector corresponding to the $\mathrm{i}^{\text {th }}$ largest eigen root λ_{i}. Find the correlation between Y_{i} and the variable X_{k}.
9. Explain MANOVA.
10. Write a short note on data mining.

PART-B

Answer anyFIVE questions

11.Find the multiple correlation coefficient between X_{1} and $X_{2}, X_{3}, \ldots, X_{p}$. Prove that the conditional variance of X_{1} given the rest of the variables cannot be greater than unconditional variance of X_{1}.
12. Derive the characteristic function of multivariate normal distribution
13. Obtain the rule to assign an observation of unknown origin to one of two p-variate normal populations having the same dispersion matrix.
14. Show that the sample generalized variance is zero if and only if the rows of the matrix of deviation are linearly dependent.
15. Using the Likelihood ratio procedure, develop the linear discriminant function and its variance.
16. Giving suitable examples explain how factor scores are used in data analysis
17. Let $\left(X_{i}, Y_{i}\right)^{\prime} \mathrm{i}=1,2,3$ be independently distributed each according to bivariate normal with mean vector and covariance matrix as given below. Find the joint distribution of the six variables. Also find the joint distribution of \bar{X} and \bar{Y}.

Mean Vector: $(\mu, \tau)^{\prime}$, covariance matrix: $\left(\begin{array}{cc}\sigma_{x x} & \sigma_{x y} \\ \sigma_{y x} & \sigma_{y y}\end{array}\right)$.
18. Outline single linkage and complete linkage procedures with an example

PART- C

Answer anyTWO questions

($2 \times 20=40$ marks)
19. Derive the distribution function of the generalized $\mathrm{T}^{2}-$ Statistic
20.a) Write short notes on repeated measurement design.
b) If $X \sim N_{p}(\mu, \Sigma)$ then prove that $Z=D X \sim N_{p}\left(D \mu, D \Sigma D^{\prime}\right)$ where D is qxp matrix rank $\mathrm{q} \leq \mathrm{p}$.
$(10+10)$
21. Consider the two data sets $X_{1}=\left(\begin{array}{ll}3 & 7 \\ 2 & 4 \\ 4 & 7\end{array}\right)$ and $X_{2}=\left(\begin{array}{ll}6 & 9 \\ 5 & 7 \\ 4 & 8\end{array}\right)$ from populations Π_{1} and Π_{2} respectively, for which $\bar{x}_{1}=\left(\begin{array}{ll}3 & 6\end{array}\right)^{\prime}, \bar{x}_{2}=\left(\begin{array}{ll}5 & 8\end{array}\right)^{\prime} \quad$ and $\quad S_{\text {pooled }}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$.
a) Calculate the linear discriminant function.
b) Classify the observation $x_{0}=(27)$ to population π_{1} or population π_{2} using the decision rule with equal priors and equal costs.
22. a)Outline the procedure to extract principal components from a given covariance matrix.
b) Prove that under some assumptions (to be stated), variance covariance matrix can be written as $\Sigma=L L^{\prime}+\Psi$ in the factor analysis model. Also discuss the effect of an orthogonal transformation.

