B.Sc. DEGREE EXAMINATION - STATISTICS

FIFTH SEMESTER - NOVEMBER 2016

ST 5400-APPLIED STOCHASTIC PROCESSES

Date: 09-11-2016
Time: 09:00-12:00
\square Max. : 100 Marks

Part - A
Answer ALL the questions:

1. Define a stochastic process with an example.
2. Define state space and time space of a stochastic process.
3. Define a Markov chain.
4. For the following Markov chain with states 0 and 1 and the transition probability matrix $\mathrm{P}=$ $\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$, which state is recurrent?
5. Obtain the periodicity of the States 0 and 1 in the Markov chain with transition probability matrix $\mathrm{P}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
6. Define communication of states i and j in a Markov chain.
7. What is the distribution of time between arrivals in a Poisson process? Write the pdf.
8. Let $\mathrm{X}(\mathrm{t})$ have a Poisson process with $\lambda=2$. Obtain $\mathrm{P}[\mathrm{X}(5)=0]$.
9. State Basic limit theorem.
10. In an irreducible aperoidic, recurrent Markov Chain

Part - B

Answer any FIVE questions:
11. State and prove Chapman - Kolmogorov equation for an $n-$ step transition probability matrix
12. Determine the Classes and periodicity of the states $0,1,2,3$ of the Markov chain with the following transition probability matrix
$\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 3 & 1 / 3 & 1 / 3 & 0\end{array}\right]$
13. For the Markov chain with states $0,1,2$ and the transition probability matrix

$$
\mathrm{P}=\left(\begin{array}{ccc}
3 / 4 & 1 / 4 & 0 \\
1 / 4 & 1 / 2 & 1 / 4 \\
0 & 3 / 4 & 1 / 4
\end{array}\right)
$$

and the initial distribution $\mathrm{P}\left[X_{0}=i\right]=\frac{1}{3}, \mathrm{i}=0,1,2$
Obtain
i) $\mathrm{P}\left[X_{2}=2, X_{1}=1 \mid X_{0}=2\right]$
ii) $\left[X_{2}=2, X_{1}=1 \mid X_{0}=1\right]$
iii) $\left[X_{2}=2 \mid X_{0}=1\right]$
14. Explain the classifications of a stochastic process with examples.
15. State and prove the additive property of Poisson process.
16. Verify whether the following Markov chain with states $0,1,2$, is irreducible and aperiodic

$$
\mathrm{P}=\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

17. Explain pure birth process.
18. Explain Poisson Process with examples.

Part- C

Answer any two questions
19. Obatin the stationary distribution $\pi_{i}, \mathrm{i}=0,1,2$ for the Markov chain with transition probability matrix $\mathrm{P}=\left(\begin{array}{ccc}1 / 3 & 0 & 2 / 3 \\ 0 & 2 / 3 & 1 / 3 \\ 2 / 3 & 1 / 3 & 0\end{array}\right)$
20. Obtain the expression $p_{n}(t)$ for a Poisson process after stating the postulates.
21. i) Show that if j is recurrent in a Markov chain then $\sum_{n} P_{i j}^{n}=\infty$
ii) If $i \leftrightarrow j$, Show that if i is recurrent then j is also recurrent.
22. Write short notes on any three of the following: a) Discrete queuing Markov chain,
b) Random walk, c) Stationary independent increments and d) Can all the States be transient in a finite Markov chain?

