LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER – **NOVEMBER 2017**

16UST3MC02 – ESTIMATING THEORY

Date: 07-11-2017 Dept. No Time: 09:00-12:00	Max. : 100 Marks
PART A	
Answer ALL the questions:	(10X2=20 marks)
1. Define unbiased estimator.	
2. State the use of Lehmann-Scheffe Theorem in Estimation Theory.	
3. Define sufficient statistic.	
4. State any two properties of UMVUE.	
5. Suggest an Moment estimator of Poisson Distribution with the parameter }.	
6. Describe method of least square estimation.	
7. Define loss function.	
8. Define prior distribution.	
9. What are confidence intervals?	
10. Let $X_1, X_2,, X_n$ be a random sample of size <i>n</i> from N(μ , ²), >0 and μ is known. Write	
100 $(1-r)$ % confidence interval for \uparrow^2 .	
PART B	
Answer any FIVE questions:	(5X8=40 marks)
11. State and prove a sufficient condition for an estimator to be consiste	ent.
12. Derive the Cramer-Rao Lower Bound for estimating μ in N(μ , 1), and obtain minimum variance bound unbiased estimator for ~ .	
13. Let $X_1, X_2,, X_n$ be a random sample from Poisson distribution P(), > 0. Show that $\sum_{i=1}^{n} X_i$ is a
complete sufficient statistic. 14. State and prove Lehmann-Scheffe theorem.	1=1
15. For B(1,), show that \overline{X} is Minimax Estimator of in the class \mathscr{T}	$= \{ \overline{X} + : \in \mathbb{R} \}$ with respect to
squared-error loss .	
16. Let $X_1, X_2,, X_n$ be a random sample from $f(x; \pi) = \begin{cases} \pi e^{-\pi x} & x > 0 \\ 0.w. \end{cases}$	> 0, " > 0
Obtain the moment estimator for ".	

- 17. Show that the posterior mean is the Bayes estimator with respect to squared error loss.
- 18. Obtain 100(1)% confidence interval for the difference of means of two normal populations with common unknown variance.

PART C Answer any TWO questions:	(2X20=40 marks)
 19. a). State and establish Cramer-Rao inequality. b). Let X₁, X₂,, X_n be a random sample from Poisson distribution with parameter 	er }, obtain
Cramer Rao lower bound for the variance of unbiased estimators of $\}$.	(12+8)
 20. a). State and prove Rao –Blackwell theorem. b). Let X₁, X₂,, X_n be i.i.d. B(1,), 0 < < 1. Starting with the UBE X₁, show the can get a better UBE for by conditioning on a sufficient statistic. 	nat we (10+10)
21. a). Give an example to show that Maximum Likelihood Estimator need not be unib). Find the maximum likelihood estimator for simultaneous estimation of ~ and based on a random sample from $N(\sim, \uparrow^2)$	
 22. a). Let X be B(n,), 0 < <1. Obtain Bayes estimator for "by taking uniform b). Obtain 100 (1−r)% asymptotic confidence interval for the parameter p of Bernoulli distribution. 	-
