LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2017

17/16PST1MC01/ST1815/ST1820 - ADVANCED DISTRIBUTION THEORY

Date: 02-11-2017
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART - A

Answer all the questions

($10 \times 2=20$)

1) Give any two equations that can be used to verify the independence of two random variables X and Y.
2) Write the pdf of Binomial distribution truncated at 0 .
3) Show that Geometric distribution satisfies Lack of memory property.
4) Let (X, Y) have Bivariate Binomial $B B\left(n, p_{1}, p_{2}, p_{12}\right)$. Obtain the marginal distribution of X.
5) Obtain the mean of \log normal distribution.
6) Write the joint pdf of $i^{\text {th }}$ and $j^{\text {th }}$ order statistics.
7) Explain Compound distributions.
8) Define non-central F variable.
9) Let X_{1}, X_{2}, X_{3} be independent Normal variables with $E\left(X_{1}\right)=2, E\left(X_{2}\right)=3, E\left(X_{3}\right)=4$, $V\left(X_{1}\right)=2, V\left(X_{2}\right)=2, V\left(X_{3}\right)=3$. Check whether $X_{1}+X_{2}-2 X_{3}$ and $X_{1}-X_{2}$ are independent.
10) Define a Quadratic form in n variables.

PART - B

Answer any 5 questions

11) Show that Lack of memory property characteristics the Exponential distribution when the random variable is non negative and continuous.
12) Let X_{1} and X_{2} be i.i.d geometric random variables. Obtain the Conditional distribution of X_{1} given $X_{1}+X_{2}=n$
13) Obtain $E(X / Y=y)$ for a Bivariate Normal distribution. Show that when $\rho=0$, the random variables X and Y are independent for Bivariate normal distribution..
14) Show that $E[E(X / Y)]=E(X)$ and $V[X]=E[V(X / Y)]+V[E(X / Y)]$.
15) Derive the pdf of $k^{\text {th }}$ Order statistic.
16) Let $F(x)=\left\{\begin{array}{lll}0 & ; x<0 \\ \frac{x+1}{2} & ; 0 \leq x<1 \text { be the distribution function of a random variable. Obtain the } \\ 1 & ; 1 \leq x\end{array}\right.$ decomposition of F, MGF.
17) Let X and Y be independent Gamma random variables, X with $G\left(\alpha_{1}, p_{1}\right)$ and Y with $G\left(\alpha_{2}, p_{2}\right)$. Obtain the distribution of $U=\frac{X}{X+Y}$.
18) Derive the MGF of trinomial distribution. Obtain $\operatorname{Cov}\left(X_{1}, X_{2}\right)$.

PART- C

Answer any 2 questions
19) a) Obtain the PGF of a Bivariate Poisson distribution.
b) Obtain $(/=)$ and $(/=)$. Hence obtain the correlation coefficient between X_{1} and X_{2}.
C) Show that $\lambda_{12}=0 \Leftrightarrow$ independence of X_{1} and X_{2}.
20) a) Derive the pdf of Non central t-distribution.
b) Let X have Binomial (n, p)for a fixed n. Let n be a random variable having Poisson distribution with parameter λ. Obtain the unconditional distribution of X.
21) a) Let X_{1} and X_{2} be i.i.d random variables with finite second moment. Show that X_{1} is Normal iff $X_{1}+X_{2} \amalg X_{1}-X_{2}$.
b) Let X_{i} have $N\left(\mu_{i}, \sigma_{i}^{2}\right) \forall i=1,2, \ldots ., n$. Let X_{i} be independent. Show that $\sum a_{i} x_{i} \amalg \sum b_{i} x_{i}$ if and only if $\sum a_{i} b_{i} \sigma_{i}^{2}=0$.
c) Give an example to show that the random variables X and Y are marginally Normal, but jointly not Normal.
22) a) Let A_{n} be an increasing sequence of events. Show that $p\left(\lim A_{n}\right)=\lim p\left(A_{n}\right)$. Deduce the result for decreasing sequence of events.
(10+5+5)
b) Show that $F(x)$ is right continuous.
c) Consider a Box containing M white balls and $N-M$ red balls. Let n balls be drawn

1) With replacement 2) Without replacement.

Obtain the probability distribution of the number of white balls drawn in both the cases.

