LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – NOVEMBER 2017

17/16PST1MC01/ST1815/ST1820 – ADVANCED DISTRIBUTION THEORY

Dept. No. Date: 02-11-2017 Time: 01:00-04:00

PART – A

- Give any two equations that can be used to verify the independence of two random variables X and Y. 1)
- 2) Write the pdf of Binomial distribution truncated at 0.
- Show that Geometric distribution satisfies Lack of memory property. 3)
- Let (X, Y) have Bivariate Binomial $BB(n, p_1, p_2, p_{12})$. Obtain the marginal distribution of X. 4)
- Obtain the mean of log normal distribution. 5)
- Write the joint pdf of i^{th} and j^{th} order statistics. 6)
- Explain Compound distributions. 7)
- Define non-central F variable. 8)
- Normal variables with $E(X_1) = 2, E(X_2) = 3, E(X_3) = 4$, be independent 9) Let X_1, X_2, X_3 $V(X_1) = 2, V(X_2) = 2, V(X_3) = 3$. Check whether $X_1 + X_2 - 2X_3$ and $X_1 - X_2$ are independent.
- 10) Define a Quadratic form in *n* variables.

PART – B

Answer any 5 questions

Answer all the questions

- 11) Show that Lack of memory property characteristics the Exponential distribution when the random variable is non negative and continuous.
- 12) Let X_1 and X_2 be i.i.d geometric random variables. Obtain the Conditional distribution of X_1 given $X_1 + X_2 = n.$
- 13) Obtain E(X/Y = y) for a Bivariate Normal distribution. Show that when ... = 0, the random variables X and Y are independent for Bivariate normal distribution...
- 14) Show that E[E(X/Y)] = E(X) and V[X] = E[V(X/Y)] + V[E(X/Y)].
- 15) Derive the pdf of k^{th} Order statistic.

$$\begin{bmatrix} 0 & ; x < 0 \end{bmatrix}$$

16) Let $F(x) = \begin{cases} \frac{x+1}{2} \\ 0 \le x < 1 \end{cases}$ be the distribution function of a random variable. Obtain the 1 ; $1 \le x$

decomposition of F, MGF.

- 17) Let X and Y be independent Gamma random variables, X with $G(r_1, p_1)$ and Y with $G(\Gamma_2, p_2)$. Obtain the distribution of $U = \frac{X}{X + Y}$.
- 18) Derive the MGF of trinomial distribution. Obtain $Cov(X_1, X_2)$.

 $(10 \times 2=20)$

Max.: 100 Marks

(5 x 8=40)

Answer any 2 questions

PART-C

(2 x 20=40)

19) a) Obtain the PGF of a Bivariate Poisson distribution.

b) Obtain (/ =) and (/ =). Hence obtain the correlation coefficient between X_1 and X_2 .

- C) Show that $\}_{12} = 0 \Leftrightarrow$ independence of X_1 and X_2 . (5+10+5 marks)
- 20) a) Derive the pdf of Non central *t*-distribution.

b) Let *X* have Binomial (n, p) for a fixed *n*. Let *n* be a random variable having Poisson distribution with parameter }. Obtain the unconditional distribution of *X*. (15+5 marks)

21) a) Let X_1 and X_2 be i.i.d random variables with finite second moment. Show that X_1 is Normal iff $X_1 + X_2 \coprod X_1 - X_2$. (10+5+5)

b) Let X_i have $N(\sim_i, \uparrow_i^2) \quad \forall i = 1, 2, ..., n$. Let X_i be independent. Show that $\sum a_i x_i \coprod \sum b_i x_i$ if and only if $\sum a_i b_i \uparrow_i^2 = 0$.

c) Give an example to show that the random variables *X* and *Y* are marginally Normal, but jointly not Normal.

22) a) Let A_n be an increasing sequence of events. Show that $p(\lim A_n) = \lim p(A_n)$. Deduce the result for decreasing sequence of events. (10+5+5)

b) Show that F(x) is right continuous.

- c) Consider a Box containing M white balls and N M red balls. Let n balls be drawn
 - 1) With replacement 2) Without replacement.

Obtain the probability distribution of the number of white balls drawn in both the cases.

\$\$\$\$\$\$\$