LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2017
ST 3506 - MATRIX AND LINEAR ALGEBRA

Date: 07-11-2017
Time: 09:00-12:00

Dept. No. \square

Max. : 100 Marks

PART - A

Answer ALL the questions:
($10 \times 2=20$ marks)

1. Define symmetric matrix.
2. Define transpose of a matrix with an example.
3. Define cofactor of an element in a matrix and hence give example.
4. Find $\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$.
5. Find inverse of the matrix $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
6. Define linear independence of vectors.
7. Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2\end{array}\right]$
8. Define 'Basis' of a vector space.
9. Write any two properties of linear transformation.
10. Define characteristic vector of a matrix

PART - B

Answer any FIVE questions:
11. Show that every square matrix A can be expressed uniquely as $P+I Q$ where P and Q are Hermitian matrices.
12. Evaluate the determinant $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$
13. Show that $\operatorname{Adj}\left(A^{\top}\right)=(\operatorname{Adj} A)^{\top}$
14. Using Cramer's rule find the solution of:
$3 x+5 y-7 z=13$
$4 x+y-12 z=6$
$2 x+9 y-3 z=20$
15. Show that no skew-symmetric matrix can be of rank 1 .
16. Solve the following system of equations by matrix inversion method:
$3 x-2 y+3 z=8$
$2 x+y-z=1$
$4 x-3 y+2 z=4$
17. State and prove Cayley-Hamilton Theorem.
18. Use Laplace method of expansion to show that

$$
\left|\begin{array}{rrrr}
a & -b & -a & b \\
b & a & -b & -a \\
c & -d & c & -d \\
d & c & d & c
\end{array}\right|=4 \cdot\left(a^{2}+b^{2}\right) \cdot\left(c^{2}+d^{2}\right)
$$

PART - C

Answer any TWO questions:

19. (a) If A and B commute, obtain $(A+B)^{n}$
(b) If A is a Hermitian matrix, show that $\mathrm{i} A$ is a skew-Hermitian matrix.
$(10+10)$
20. (a) If A and B are square matrices of the same order, prove that $\operatorname{Adj}(A B)=(\operatorname{Adj} B) .(\operatorname{Adj} A)$
(b) Prove that $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=4 a b c$
$(10+10)$
21. (a) Find the inverse of the matrix
$\left[\begin{array}{cccc}1 & -1 & 0 & 2 \\ 0 & 1 & 1 & -1 \\ 2 & 1 & 2 & 1 \\ 3 & 2 & 1 & 4\end{array}\right]$
(b) Find the rank of the matrix
$\left[\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15\end{array}\right]$
22. (a) Find the characteristic equation of the following matrix and hence find its inverse using Cayley-Hamilton Theorem:

$$
\left[\begin{array}{rrr}
0 & 1 & 2 \\
0 & -3 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

(b) Verify whether the following three vectors are linearly independent:
$\left[\begin{array}{c}0 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right]$

