LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER - NOVEMBER 2019

16/17/187UST3MC02 - ESTIMATION THEORY

Date: 31-10-2019 Dept. No. Time: 01:00-04:00

SECTION – A

Answer ALL questions.

- 1. Define parameter and parameter space. Give an example.
- 2. State the Cramer-Rao lower bound.
- 3. Define Complete statistic. Give an example.
- 4. If $X_1, X_2, X_3, \dots, X_n$ are random samples from N(μ ,10). Suggest a sufficient statistic for the family.
- 5. Describe the Method of Minimum Chi-square estimation.
- 6. State the Least Square estimators of S_0 and S_1 , in the model $Y = S_0 + S_1 X + V$
- 7. Define Loss function. Give an example.
- 8. Define conjugate prior. Give an example.
- 9. Describe confidence intervals and their applications.
- 10. State the 95% confidence interval for ~ , when a random sample of size 'n' is drawn from N(~ ,10).

SECTION - B

Answer Any **FIVE** questions.

- 11. Derive an unbiased estimator of μ , when a random sample of size 'n' is drawn from N(~,5).
- 12. State and prove Cramer-Rao inequality.
- 13. Define UMVUE and prove that it is unique, when it exists.
- 14. Derive a sufficient statistic of } in a Poisson distribution, based on a random sample of size 'n'.
- 15. If $X_1, X_2, X_3, \dots, X_n$ is random sample of form a Normal distribution N(\sim, \uparrow^2), \sim known, derive a sufficient statistic for ^{† 2}using Neyman Factorization theorem.
- 16. Describe Bayes estimation with suitable example.
- 17. Let $X_1, X_2, X_{3,...,} X_n$ be a random sample from Binomial(m, "), " $\in (0,1)$,

m-known and let Beta(r, s) be the prior distribution for ". Find the

Bayesian estimator for ".

18. Describe Method of Moments estimation with suitable example.

Max.: 100 Marks

 $10 \ge 2 = 20$

5 X 8 = 40

SECTION – C

Answer any TWO questions.	$2 \ge 20 = 40$
----------------------------------	-----------------

19. a. Define a consistent estimator. Find the same for parameter p, based on a random sample of size n from	
Binomial distribution with parameters n and p.	[12]
b. State any four properties of MLE	[8]
20. a. State and prove Lehmann- Scheffe theorem.	[10]
b. Derive Method of Moments estimator for $\ensuremath{\ulcorner}$, based on	
a random sample of size n from Uniform distribution U(0, r).	[10]
21. a. State and prove Rao-Blackwell theorem.	[12]
b. Describe method of Modified Minimum Chi-square estimation.	[8]

22. a. Let $\{T_n\}$, n = 1, 2,n be a sequence of estimators such that

 $\underset{n \to \infty}{Lim} E_{(T_n)} = \mathbb{E}(_{(T_n)}) = \mathbb{E}(_{(T_n)}) = 0 \quad \forall_{(T_n)} \in \Theta \text{ .Then show that } T_n \text{ is consistent for } \mathbb{E}(_{(T_n)}) = 0$

[10]

b. Obtain the confidence interval for (i). single proportion and (ii). difference of proportions

[10]
