LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – **NOVEMBER 2019**

PST 1501 – ADVANCED DISTRIBUTION THEORY

Date: 30-10-2019 Time: 01:00-04:00

SECTION – A

Answer ALL the questions

- 1. Write the pdf of truncated Binomial distribution truncated at 0 and 1.
- 2. Find E(X²) for lognormal distribution.
- 3. Write the MGF of Multinomial distribution. What is the distribution of X_1 ?

Dept. No.

- 4. Let X₁ and X₂ be independent such that $X_1 \sim N(\sim_1, \uparrow_1^2)$ and $X_2 \sim N(\sim_2, \uparrow_2^2)$. Obtain the distribution of $2X_1+3X_2$.
- 5. Write the pdf of kth order statistics when a random sample of size n is from exponential distribution.
- 6. Prove the additive property of chi-square distribution.
- 7. Show that the eigen values of the Idempotent matrix is either 0 or 1.
- 8. Explain spectral decomposition of a real symmetric matrix.
- 9. Define Non-central F distribution.
- 10. State any 4 properties of distribution function.

SECTION – B

Answer any FIVE questions

11. Decompose the following distribution function into discrete and continuous parts. Obtain the mean and variance.

$$F(x) = \begin{cases} 0 & x < -1 \\ \frac{x+2}{4} & -1 \le x < 1 \\ 1 & 1 \le x < \infty \end{cases}$$

- 12. Derive the PGF of Bivariate Binomial distribution. Hence prove the additive property of Bivariate Binomial distribution.
- 13. Derive the mean and variance of truncated Poisson distribution truncated at 0.

 $(5 \times 8 = 40 \text{ Marks})$

(10 x 2 = 20 Marks)

Max.: 100 Marks

- 14. Derive the joint pdf of the ith and j^{it} order statistics when a random sample of size n is drawn from a continuous distribution.
- 15. If X has $N_n(0, \Sigma)$ where Σ is positive definite. Let Q = X'AX for a symmetric matrix A with rank r. prove Q has chi-square with r degrees of freedom iff $A \Sigma A = A$.
- 16. Obtain the marginal and conditional distributions in the case of Bivariate Normal distribution.
- 17. Let X₁ and X₂ be iid N(0,1) variables. Obtain the distribution of $\frac{X_1}{X_2}$.
- 18. Explain the compound distributions. Let X have a Poisson distribution with parameter $\}$ where $\}$ is a continuous random variable with Gamma (r, [). Obtain the compound distribution of X.

SECTION – C

Answer any TWO questions

- 19. a) State and Prove Skitovitch theorem.
 - b) Let X_1, X_2 be iid continuous type random variables with finite second moment. Show that X_1 is normal iff

 $(2 \times 20 = 40 \text{ Marks})$

(10+6+4)

 $X_1 + X_2$ and $X_1 - X_2$ are independent. (10+10)

20. State and prove any three characterization properties of Geometric distribution.

21. a) Derive the pdf of non-central chi-square distribution.

b) Let X₁ and X₂ be independent gamma random variables such that X₁ with Gamma (Γ_1 , m) and X₂ with Gamma

 (Γ_2, n) . Obtain the distribution of $\frac{X_1}{X_1 + X_2}$ and $X_1 + X_2$.

c) State and prove the additive property of Gamma distribution.

- 22. a) Obtain the PGF of Bivariate Poisson distribution.
 - b) Obtain the conditional pgf of X_1 given $X_2=x_2$. Hence obtain the correlation coefficient.

c) Derive the necessary and sufficient condition for X_1 and X_2 to be independent in a Bivariate Poisson distribution. (5+10+5)
