LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – NOVEMBER 2019

PST 1503 – STATISTICAL MATHEMATICS

Date: 05-11-2019 Time: 01:00-04:00

SECTION - A

Answer ALL questions. Each carries TWO marks.

- 1. Give the definition of sequence of real numbers with an example.
- 2. Show that the sequence (n) where $n \in N$ does not have a limit.
- 3. Let L be the limit of a sequence (s_n) . Then prove that every open interval containing L contains all but a finite number of terms of the sequence.
- 4. Show that the series $1 + 2 + 3 + \dots + n + \dots$ is divergent.
- 5. State necessary and sufficient condition for the convergence of a telescoping series.

Dept. No.

- 6. Obtain sup f(x) and $\inf f(x)$ for the function $f(x) = e^{-x}$ on $(-\infty, \infty)$.
- 7. Show that the function $f(x) = x^2$ is bounded on each bounded interval of R, but is unbounded on R.
- 8. If f(x) = x for $x \in (-\infty, \infty)$, then prove that 'f' is continuous at '0', but not differentiable at '0'.
- 9. Give the Definition of an upper and lower integral of a bounded function 'f' over [a, b].
- 10. Explain linear independence of 'k' vectors with an illustration.

SECTION – B

Answer any FIVE questions. Each carries EIGHT marks.

(5 x 8 = 40 marks)

Max.: 100 Marks

(10 x 2 = 20 marks)

11. Give the formula for nth term of the sequence $(s_n) = (1, -4, 7, -10, 13, ...)$. Check if each of the following sequence is a subsequence of (s_n) :

(i)
$$(1, 7, 13, ...)$$

(ii) $(-4, -10, -16, ...)$

12. If
$$s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$
, then verify if (s_n) converges.

- 13. Check if the limit of the sum of two convergent sequences is the sum of their limits.
- 14. Verify the convergence of the series $\sum_{n=0}^{\infty} x^n$ when (i) 0 < x < 1, and (ii) x 1.
- 15. Prove that absolute convergence of $\sum a_n$ implies convergence of $\sum a_n$. Verify if the converse is true.
- 16. Verify the convergence of a series which is dominated by an absolutely convergent series.
- 17. Let be the partition $\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\}$ of [0, 1]. Let f(x) = x defined on [0, 1]. Obtain U [f;] and L[f;].
- 18. List any four properties of the Riemann integral.

SECTION C	
SECTION – C	
Answer any TWO questions. Each carries TWENTY marks.	(2 x 20 = 40 marks)
19(a). Examine the convergence of the sequence $\left(\left(1+\frac{1}{n}\right)^n\right)$.	(10)
19(b). Show that a monotonic series converges if and only if it is bounded. 20. Let $f(x) = \frac{1}{x}$. Then prove the following:	(10)
(i) f is unbounded for $0 < x < \infty$	
(ii) $\inf_{x>0} f(x) = 0$ (iii) f is bounded on (a, ∞) for any a > 0.	(20)
21(a). Write the definition of improper integral of the first, second and third kind we example for each kind.21(b). Check the convergence of the following integrals:	vith an (8)
(i) $\int_{1}^{\infty} \frac{1}{x^2} dx$ (ii) $\int_{0}^{\infty} e^{-x} dx$ (iii) $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$.	(12)
22(a). State Taylor's formula and Maclaurin's theorem with Lagranges form of rem Hence find Taylor's formula for $f(x) = log(1 + x)$ about $a = 2$ and $n = 4$.	nainder. (10)
22(b). Discuss the characteristic value problem and define the characteristic roots a Hence obtain the characteristic roots and vectors for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.	and vectors. (10)

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$