LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2019
PST 1503 - STATISTICAL MATHEMATICS

Date: 05-11-2019
Time: 01:00-04:00

SECTION - A

Answer ALL questions. Each carries TWO marks.
(10 x $2=20$ marks)

1. Give the definition of sequence of real numbers with an example.
2. Show that the sequence (n) where $n \in N$ does not have a limit.
3. Let L be the limit of a sequence $\left(\mathrm{s}_{\mathrm{n}}\right)$. Then prove that every open interval containing L contains all but a finite number of terms of the sequence.
4. Show that the series $1+2+3+\ldots+\mathrm{n}+\ldots$ is divergent.
5. State necessary and sufficient condition for the convergence of a telescoping series.
6. Obtain $\sup f(x)$ and $\inf f(x)$ for the function $f(x)=e^{-|x|}$ on $(-\infty, \infty)$.
7. Show that the function $f(x)=x^{2}$ is bounded on each bounded interval of R, but is unbounded on R.
8. If $f(x)=|x|$ for $x \in(-\infty, \infty)$, then prove that ' f ' is continuous at ' 0 ', but not differentiable at ' 0 '.
9. Give the Definition of an upper and lower integral of a bounded function ' f ' over $[a, b]$.
10. Explain linear independence of ' k ' vectors with an illustration.
SECTION - B

Answer any FIVE questions. Each carries EIGHT marks.
11. Give the formula for nth term of the sequence $\left(s_{n}\right)=(1,-4,7,-10,13, \ldots)$. Check if each of the following sequence is a subsequence of $\left(\mathrm{s}_{\mathrm{n}}\right)$:
(i) $(1,7,13, \ldots)$
(ii) $(-4,-10,-16, \ldots)$
(iii) $(7,-4,13,-10, \ldots)$
(iv) $(4,10,16, \ldots)$.
12. If $\mathrm{s}_{\mathrm{n}}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}$, then verify if $\left(\mathrm{s}_{\mathrm{n}}\right)$ converges.
13. Check if the limit of the sum of two convergent sequences is the sum of their limits.
14. Verify the convergence of the series $\sum_{n=0}^{\infty} x^{n}$ when (i) $0<x<1$, and (ii) $x \geq 1$.
15. Prove that absolute convergence of $\sum a_{n}$ implies convergence of $\sum a_{n}$. Verify if the converse is true.
16. Verify the convergence of a series which is dominated by an absolutely convergent series.
17. Let σ be the partition $\left\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\right\}$ of $[0,1]$. Let $f(x)=x$ defined on $[0,1]$. Obtain $U[f ; \sigma]$ and L[f; σ].
18. List any four properties of the Riemann integral.

SECTION - C

Answer any TWO questions. Each carries TWENTY marks.
19(a). Examine the convergence of the sequence $\left(\left(1+\frac{1}{n}\right)^{n}\right)$.
19(b). Show that a monotonic series converges if and only if it is bounded.
20. Let $\mathrm{f}(\mathrm{x})=\frac{1}{x}$. Then prove the following:
(i) f is unbounded for $0<\mathrm{x}<\infty$
(ii) $\inf _{\mathrm{x}>0} \mathrm{f}(\mathrm{x})=0$
(iii) f is bounded on (a, ∞) for any $\mathrm{a}>0$.

21(a). Write the definition of improper integral of the first, second and third kind with an example for each kind.
21(b). Check the convergence of the following integrals:
(i) $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
(ii) $\int_{0}^{w} e^{-x} d x$
(iii) $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$.

22(a). State Taylor's formula and Maclaurin's theorem with Lagranges form of remainder.
Hence find Taylor's formula for $\mathrm{f}(\mathrm{x})=\log (1+\mathrm{x})$ about $\mathrm{a}=2$ and $\mathrm{n}=4$.
22(b). Discuss the characteristic value problem and define the characteristic roots and vectors.
Hence obtain the characteristic roots and vectors for the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.

