LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2019
ST 3506 - MATRIX AND LINEAR ALGEBRA

Date: 31-10-2019
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

SECTION - A : Answer ALL the questions

(10×2 $2=20$)
1 Define symmetric matrix with an example.
2 When do you say that the matrix is singular and non-singular?
$3 \quad$ i: $1 \quad 2 \quad 1$ nd non-s
Compute the rank of the matrix $\mathrm{A}=\left[\begin{array}{ccc}-2 & -3 & 1 \\ 3 & 5 & 0\end{array}\right]$.
4 Mention any two properties of determinant.
5 When do we say that the vectors $\mathrm{X}_{1}, \mathrm{X}_{2} \ldots, \mathrm{X}_{\mathrm{r}}$ are linearly dependent?
6 Define linear transformation.
7 How do you define vector space?
8 Explain linear homogeneous equations.
9 Find the characteristic root of the matrix 3
$\left[\begin{array}{ll}4 & 5\end{array}\right]$
10 Show that if λ is a characteristic root of a matrix A, then prove that λ^{k} is the characteristic root of A^{k}.

SECTION - B: Answer ANY FIVE questions
11 Prove that if A and B are symmetric matrices, then $A B$ is symmetric if and only if

$$
\mathrm{AB}=\mathrm{BA} .
$$

Find the rank of the matrix
A.

$$
\left[\begin{array}{rrrr}
1 & 1 & 2 & 1 \\
1 & 2 & 3 & 2 \\
3 & 1 & 1 & 3 \\
3 & & & 3
\end{array}\right]
$$

$\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 7 \\ \vdots \text { anatrix } & A_{2 \text { is }}\end{array}\right]$ possible for the rank to be 1 ? Why?
$\left[\begin{array}{ccc}\text { D } & 4 & 2 \text { is } \\ 3 & 1 & 2 \\ 1 & 0 & x \\ 1 & 0\end{array}\right]$

Show how the product of two matrices is related to the composition of Linear Transformations
Explain Cramer's rule with an example.
Show that the set of 3 vectors $\mathrm{X} 1=(100), \mathrm{X} 2=(010)$ and $\mathrm{X} 3=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$ are linearly independent.

SECTION - C: answer ANY TWO questions

19 a) State and prove Cayley-Hamilton theorem.
b) using Cayley-Hamilton theorem, find the inverse of $\left.\begin{array}{ccc}1 & 2 & 4 \\ -2 & 3 & 0 \\ -3 & -1 & 0\end{array}\right]$
a) Using Cramer's rule find the solution of
$2 x-y+3 Z=9$
$x+y+z=6$
$x-y+z=2$
b) Write any four properties of Eigen values and Eigen vectors

b) Find the rank of the matrix $A=\left[\begin{array}{llll}3 & 2 & 1 & 3 \\ 3 & 4 & 3 & 2 \\ 2 & 2 & 3 & 0 \\ 1 & 2 & 3 & 3 \\ \text { of the } 3 & 2 & 3 & 2 \\ \text { a) Solve for } x & 3^{x-3} & & 3\end{array}\right]$
a) Solve for $x\left|\begin{array}{ccc}3^{x}-3 & \left.3 x^{3}\right\} & 3 \\ 3 & 3 & 3 x-3\end{array}\right|=$
b) Show that every square matrix with complex elements can be expressed uniquely as the sum of a Hermitian and a Skew- Hermitian Matrix.

